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ABSTRACT

The development and verification of a new version of the DieCAST ocean circulation model to be referred
to as CANDIE (Canadian Diecast) are considered. Both CANDIE and DieCAST have many features in common
with the well-known Modular Ocean Model (MOM) of the Geophysical Fluid Dynamics Laboratory. Of particular
relevance to the present study are the rigid-lid approximation and the use of standard Cartesian coordinates.
The DieCAST formulation in terms of the surface pressure, rather than the volume transport streamfunction, is
also used in CANDIE to reduce numerical sensitivity to ocean depth variations. The major difference between
MOM and DieCAST is the use of a mixed C and A grid formulation in DieCAST rather than the B grid
formulation used in MOM. CANDIE differs from DieCAST in the use of a standard C grid formulation and a
reduction in the magnitude of the time truncation error associated with the implicit treatment of the Coriolis
force. The implementation of the rigid-lid approximation is retained.

To assess the reliability of both DieCAST and CANDIE, the authors have applied these models to a problem
used by Haidvogel and Beckmann in a comparison of several different model formulations. The tests include
the influence of a steep-sided coastal canyon that represents a significant challenge for the step topography of
Cartesian coordinate models. Haidvogel and Beckmann’s tests show general agreement between models based
on topography-following coordinates, but significantly different results were obtained with MOM. The results
of DieCAST for the homogeneous test case also differ substantially from those of the s-coordinate models,
largely due to dissipation associated with low-order interpolations used adjacent to solid boundaries in DieCAST.
However, the results of CANDIE are in good agreement with those of the s-coordinate models for both ho-
mogeneous and stratified coastal canyon experiments. These results clearly demonstrate that the differences
found for both MOM and DieCAST are not due to intrinsic limitations associated with the use of Cartesian
coordinates.

1. Introduction

The choice of a vertical coordinate system for use in
a numerical model has been a controversial issue in the
ocean modeling community. The geopotential or z-level
coordinate is simplest and has been widely used in the
past. However, z-level models must represent the real
bathymetry by a series of steps, which may lead to large
truncation errors over steep topography (e.g., Gerdes

Corresponding author address: Dr. Jinyu Sheng, Dalhousie Uni-
versity, Dept. of Oceanography, Halifax, NS B3H 4J1 Canada.
E-mail: sheng@phy.ocean.dal.ca

1993; Adcroft et al. 1997; Gnanadesikan and Paca-
nowski 1997). An alternative approach is to use terrain-
following coordinates with the lowest surface conform-
ing to the bottom. These coordinates are specifically
designed to give improved representation of variable
bottom topography, but they are subject to their own
forms of systematic error, most notably the errors in the
horizontal pressure gradients associated with the com-
bination of stratification and bottom topography (Haney
1991; Mellor et al. 1994).

Recognizing the need for systematic comparison of
coastal ocean models, Haidvogel and Beckmann (1998)
(henceforth referred to as HB) use an idealized coastal
canyon problem to compare the results of various mod-
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els. Their results show that most of the models produce
similar overall circulation patterns. However, the well-
known Geophysical Fluid Dynamics Laboratory (GFDL)
Modular Ocean Model (MOM) (e.g., Bryan 1969; Cox
1984; Semtner 1986) gave results substantially different
from those produced by other models. Since the GFDL
model was the only z-coordinate model that contributed
to this intercomparison, the question naturally arises
whether the undesirable features associated with the
GFDL model are common to other z-level models.

One goal of the present study is to compare the results
presented by HB with at least one additional model
based on z coordinates. For this purpose we chose to
start with the C grid version of the DieCAST model
(Dietrich/Center for Air–Sea Technology; see Dietrich
et al. 1987). DieCAST has been successfully applied to
the wind-driven circulation in Lake Neuchatel, Swit-
zerland (Zuur and Dietrich 1990), and loop current ed-
dies in the Gulf of Mexico (Dietrich and Lin 1994) and
is also being applied to study the buoyancy and wind-
driven circulation of the North Atlantic (D. Dietrich
1997, personal communication). DieCAST is a primitive
equation, z-level model that uses the hydrostatic, Bous-
sinesq, and rigid-lid approximations. In these respects,
it is similar to the GFDL model. However, DieCAST
differs from MOM in that it is formulated in terms of
the surface pressure rather than the volume transport
streamfunction. It should be noted that the latest version
of MOM includes an optional surface pressure formu-
lation (e.g., Pacanowski 1996). Therefore, unless oth-
erwise stated, MOM in this paper refers to the traditional
version used in the HB test cases, which is formulated
in terms of the streamfunction. DieCAST also differs
from MOM in that it uses a mixed C and A grid dis-
cretization rather than the B grid discretization used in
MOM. Note that the rigid-lid approximation used in
DieCAST and MOM eliminates fast-surface gravity
waves, which limits the application of both models to
frequencies such that v/f K (re/L)2, where v is the
frequency, f is the Coriolis parameter, re is the external
Rossby radius, and L is the length scale of the motion
(Bryan 1969).

Initial results obtained with the DieCAST model for
the coastal canyon test cases were not very satisfactory.
This has led to some straightforward but important mod-
ifications of the original DieCAST code. The resulting
circulation model will be referred to as CANDIE: the
Canadian version of the DieCAST model. The second
purpose of this paper is to introduce the new CANDIE
model and discuss its similarities to and differences from
DieCAST. The final purpose is to demonstrate the good
agreement between the results obtained with CANDIE
and those obtained with models utilizing topography-
following coordinates.

The organization of this paper is as follows. The basic
governing equations are reviewed in section 2. Time
and space discretizations are discussed in sections 3 and
4. A brief discussion of the differences between CAN-

DIE and DieCAST is given in section 5. We apply CAN-
DIE to HB’s coastal canyon test problems and compare
results with those produced by other coastal ocean mod-
els in section 6. An example of DieCAST results is also
shown in section 6. A summary and discussion of results
are presented in section 7.

2. The governing equations

We consider the three-dimensional (3D) primitive
equations for an incompressible, stratified fluid using
the rigid-lid, Boussinesq, and hydrostatic approxima-
tions. They are essentially the same as those considered
by Dietrich (1992), except that spherical polar coordi-
nates are used here:

]u u tanf
1 Lu 2 f 1 y1 2]t R

1 ]p ] ]u
5 2 1 D u 1 K , (1)m m1 2r R cosf ]l ]z ]zo

]y u tanf
1 Ly 1 f 1 u1 2]t R

1 ]p ] ]y
5 2 1 D y 1 K , (2)m m1 2r R ]f ]z ]zo

]p
5 2rg, (3)

]z

1 ]u ](y cosf) ]w
1 1 5 0, (4)1 2R cosf ]l ]f ]z

r 5 r(T, S, p), (5)

]T ] ]T
1 LT 5 D T 1 K , (6)h h1 2]t ]z ]z

]S ] ]S
1 LS 5 D S 1 K , (7)h h1 2]t ]z ]z

where u, y , w are the east (l), north (f ) and vertical
(z) components of the velocity; p is pressure; r is den-
sity; T and S are potential temperature and salinity; Km

and Kh are vertical eddy viscosity and diffusivity co-
efficients; f is the Coriolis parameter; ro is a reference
density; R and g are the earth’s radius and gravitational
acceleration; L is an advection operator defined as

u ]q y ]q ]q
Lq 5 1 1 w ; (8)

R cosf ]l R ]f ]z

and Dm and Dh are diffusion operators defined as

2 2A 1 ] q ]q ] q(m,h)D q 5 2 tanf 1 , (9)(m,h) 2 2 2 21 2R cos f ]l ]f ]f
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where Am and Ah are horizontal eddy viscosity and dif-
fusivity coefficients, respectively.

Under the hydrostatic approximation (3), the pressure
field at depth z can be expressed in terms of the pressure
at the rigid upper surface, ps, plus that due to the fluid
between the rigid lid and the depth z:

0

p 5 p 1 p , p 5 g r dz. (10)s b b E
z

Lateral boundary conditions are required to close the
above governing equations. No normal flow across solid
boundaries is imposed, and the component of horizontal
velocity tangent to solid walls satisfies either free-slip
or no-slip boundary conditions. In the case of free-slip
boundary conditions the tangential stress at vertical
boundaries is set to zero, and for the no-slip boundary
condition, the tangential velocity at the boundary is set
to zero. Note that since the real bathymetry is repre-
sented by a series of steps in the z-level model, lateral
boundary conditions are required not only at the coast
but also at all submerged vertical boundaries.

The boundary conditions for the vertical velocity com-
ponent w are based on the rigid-lid approximation and
the condition of no normal flow at the bottom. For gen-
eral topography these conditions can be expressed as

w 5 0, (11)0

1 ]h ]h
w 5 2 u 1 y cosf , (12)2h 2h 2h1 2R cosf ]l ]f

where the subscripts 0 and 2h indicate evaluation at
the sea surface z 5 0 and at the sea bottom z 5 2h,
respectively.

Integrating the continuity equation (4) and using (11)
gives

0 01 ]u ](y cosf)
dz 1 dz 5 w , (13)E E 2h1 2R cosf ]l ]f

2h 2h

and substituting (12) into (13), we obtain the depth-
integrated continuity equation:

0 01 ] ]
u dz 1 y cosf dz 5 0.E E1 2 1 2[ ]R cosf ]l ]f

2h 2h

(14)

Equation (14) holds for general topography and is valid
in both z- and s-coordinate formulations. Note that for
the steplike topography of z-coordinate models, h is
uniform over each individual grid cell and there is no
flow through solid boundaries, so that in the model w
is set to zero at the bottom.

3. Time discretization

As discussed in the introduction, both DieCAST and
CANDIE are similar to the GFDL model, most notably
in the use of Cartesian coordinates and the rigid-lid
approximation. However, unlike the GFDL model,
which uses a volume transport streamfunction, both
DieCAST and CANDIE are formulated in terms of the
surface pressure. The main advantages of using a pres-
sure formulation are the increased ease with which is-
lands are handled and the reduced numerical sensitivity
to depth variations. The latter attribute is due to the
appearance of h(l, f ) [rather than 1/h(l, f ) as in the
streamfunction formulation] in the differential equation
determining the surface pressure and reduces the need
to smooth the model bottom topography to maintain
numerical stability (e.g., Dukowicz et al. 1993). Again,
we emphasize that in all references to the GFDL model,
we are referring to the particular version used in the test
cases presented by HB, which use the streamfunction
formulation. Madala and Piacsek (1977), Killworth et
al. (1991), Dukowicz et al. (1993), Dukowicz and Smith
(1994), and Pacanowski (1996) have each reformulated
the GFDL model using different pressure formulations,
and it would be of interest to explore how these models
perform on Haidvogel and Beckmann’s test cases. How-
ever, our interest here is in the approach used by Die-
trich, which is distinct from each of those mentioned
above. This approach is presented below.

Using forward time stepping for horizontal diffusion
terms, centered time stepping for advection and pressure
variations, backward (or fully implicit) time stepping
for vertical diffusion, and either centered or backward
time stepping for the Coriolis term, the time discreti-
zation of (1), (2), (6), and (7) can be written as

n11 n21u 5 u 1 2Dt

n n11u tanf 1 ] ] ]u
n21 n n n11 n n n3 D u 2 Lu 1 y 1 f [gy 1 (1 2 g)y ] 2 (p 1 p ) 1 K , (15)m s b m5 1 26R r R cosf ]l ]z ]zo

n11 n21y 5 y 1 2Dt

n n11u tanf 1 ] ] ]y
n21 n n n11 n n n3 D y 2 Ly 2 u 2 f [gu 1 (1 2 g)u ] 2 (p 1 p ) 1 K , (16)m s b m5 1 26R r R ]f ]z ]zo
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n11] ]T
n11 n21 n21 nT 5 T 1 2Dt D T 2 LT 1 K ,d h1 2[ ]]z ]z

(17)

n11] ]S
n11 n21 n21 nS 5 S 1 2Dt D S 2 LS 1 K ,d h1 2[ ]]z ]z

(18)

where Dt is the time step and superscripts n 2 1, n, and
n 1 1 represent the values of quantities at the corre-
sponding time steps. The quantity g is a measure of
implicitness for the Coriolis term: g 5 0 gives centered
(leapfrog) time differencing and g 5 1 gives backward
(fully implicit) treatment of the Coriolis term. Dietrich
et al. (1987) noted that, when the Ekman layer is re-
solved, an extremely short time step would be required
if an explicit scheme were used for the vertical diffusion
terms. To avoid this undesirable restriction, while main-
taining an accurate representation of the Ekman layer
dynamics, Dietrich et al. (1990) suggested that both the
Coriolis and the vertical diffusion terms should be treat-
ed implicitly. The equations derived below allow for
either implicit or explicit treatment of the Coriolis terms,
but they treat the vertical mixing in both the momentum
and tracer equations implicitly.

Clearly, since the Coriolis term may include a fully
implicit contribution and the vertical diffusion is always
treated implicitly, the state variables cannot be updated
in the straightforward manner implied by the above

equations. In practice, the updating is done through a
sequence of steps equivalent to solving the above equa-
tions in combination with the continuity and hydrostatic
equations at appropriate time levels.

Let us rewrite un11, y n11, Tn11, and Sn11 in terms of
a set of trial variables:

n11 n11 n11 n11 n11u 5 ũ 1 (û 2 ũ ) 1 du
n11 n11[ û 1 du , (19)

n11 n11 n11 n11 n11y 5 ỹ 1 (ŷ 2 ỹ ) 1 dy

n11 n11[ ŷ 1 dy , (20)
n11 n11 n11 n11 n11˜ ˆ ˜ ˆT 5 T 1 (T 2 T ) [ T , (21)

and
n11 n11 n11 n11 n11˜ ˆ ˜ ˆS 5 S 1 (S 2 S ) [ S , (22)

where the initial trial fields ũn11, , T̃ n11, and S̃ n11n11ỹ
are updated to include the effects of horizontal diffusion
(forward), nonlinearity (centered), the pressure gradient
force (centered baroclinic and forward surface contri-
butions), and the contribution to the Coriolis force based
on centered differencing. The fields ûn11, , T̂n11, andn11ŷ
Ŝ n11 include the additional effects of vertical diffusion
(backward) and the contribution to the Coriolis force
based on backward differencing. Finally, dun11 and dyn11

represent the corrections to the velocity components re-
quired to allow for a time-centered surface pressure.

The initial trial fields ũn11, , T̃ n11, and S̃ n11 aren11ỹ
given by

nu tanf 1 ]
n11 n21 n21 n n n n21 nũ 5 u 1 2Dt D u 2 Lu 1 y 1 f (1 2 g)y 2 (p 1 p ) , (23)m s b[ ]R r R cosf ]lo

nu tanf 1 ]
n11 n21 n21 n n n n21 nỹ 5 y 1 2Dt D y 2 Lu 2 u 2 f (1 2 g)u 2 (p 1 p ) , (24)m s b[ ]R r R ]fo

n11 n21 n21 nT̃ 5 T 1 2Dt[D T 2 LT ], (25)h

n11 n21 n21 nS̃ 5 S 1 2Dt[D S 2 LS ]. (26)h

Each of the terms on the right sides of (23)–(26) are
expressed in terms of previously determined state vari-
ables and hence are trivially calculated. Note the ap-
pearance of rather than on the right-hand sidesn21 np ps s

of (23) and (24). The quantity is not yet known, butnps

it will be determined and properly accounted for in the
final step of the solution procedure.

The advanced trial fields ûn11, , T̂ n11, and Ŝ n11n11ŷ
are then determined by updating ũn11, , T̃ n11, andn11ỹ
S̃ n11 to give the best current estimates of the effects of
vertical diffusion and Coriolis:

n11] ]û
n11 n11 n11û 5 ũ 1 2Dt K 1 gFŷ , (27)m1 2]z ]z

n11] ]ŷ
n11 n11 n11ŷ 5 ỹ 1 2Dt K 2 gFû , (28)m1 2]z ]z

n11ˆ] ]T
n11 n11ˆ ˜T 5 T 1 2Dt K , (29)h1 2]z ]z

n11ˆ] ]S
n11 n11ˆ ˜S 5 S 1 2Dt K , (30)h1 2]z ]z

where F 5 2 fDt. Note that we have used ]un11/]z [
]ûn11/]z and ]y n11/]z [ ]ûn11/]z in the vertical diffusion
terms on the right sides of (27) and (28) since the pres-
sure correction terms dun11 and dy n11 are depth inde-
pendent [see (33) and (34)]. Also note that Tn11 [ T̂ n11

and Sn11 [ Ŝ n11 [see (21) and (22)] have been used in
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the vertical diffusion terms on the right-hand sides of
(29) and (30).

At this point, T̂ and Ŝ are completely updated, but ũ
and are based on the use of rather than on then21 nỹ p ps s

right sides of (23) and (24), and the effect spills over
into (27) and (28) through the use of (ũn11, ) on then11ỹ
right sides of these equations. It remains to adjust the
pressure terms to the time level n and update the ve-
locities appropriately in order to achieve a fully time-
centered pressure formulation.

Subtracting (27) from (15), then using (23) to elim-
inate ũn11, and performing the corresponding operations
on (16), (24), and (28) gives

n2Dt ]dpsn11 n11du 5 gFdy 2 , (31)
r R cosf ]lo

n2Dt ]dpsn11 n11dy 5 2gFdu 2 , (32)
r R ]fo

in which d(u, y)n11 5 (u, y)n11 2 (û, )n11 and 5nŷ dps

2 . It follows thatn n21p ps s

n n2Dt 1 ](dp ) ](dp )s sn11du 5 2 1 gF ,
2 [ ]r R[1 1 (gF ) ] cosf ]l ]fo

(33)

n n2Dt ](dp ) gF ](dp )s sn11dy 5 2 2 .
2 [ ]r R[1 1 (gF ) ] ]f cosf ]lo

(34)

Note that , dun11, and dy n11 are all independent ofndps

z. Hence, they make no contribution to the vertical dif-
fusion terms that are thus fully accounted by (27) and
(28).

Substituting (19) and (20) into (14) and then using
(33) and (34) gives

n n n2Dt ] h ]dp ] h cosf ]dp ] hgF ]dps s s1 1
2 2 2 21 2 1 2 1 2[r R cosf ]l [1 1 (gF ) ] cosf ]l ]f 1 1 (gF ) ]f ]l 1 1 (gF ) ]fo

n] hgF ]dps2
21 2 ]]f 1 1 (gF) ]l

o1 ] ]
n11 n115 û dz 1 ŷ cosf dz ,E E[ ]R cosf ]l ]f

2h 2h

n115 ŵ , (35)2h

where the final equality is a convenient shorthand no-
tation: the penultimate form is used in all numerical
calculations. Note that (ûn11, ) does not in generaln11ŷ
satisfy the depth-integrated continuity equation. There-
fore, is not always zero, which leads to nonzeron11ŵ2h

corrections d(u, y)n11 and .ndps

Equation (35) is the general equation determining the
surface pressure correction . For the special case gndps

5 0 (centered Coriolis), this equation simplifies to

n n2Dt ] h ]dp ] ]dps s n111 h cosf 5 ŵ .2h2 1 2 1 2[ ]r R cosf ]l cosf ]l ]f ]fo

(36)

Equations (35) and (36) are analogous to Eq. (22) in
Dukowicz et al. (1993).

Equations (35) and (36) are forced 2D elliptic equa-
tions for the surface pressure correction , with thendps

forcing determined by the net divergence (or conver-
gence) implied by the advanced trial horizontal velocity
field (ûn11, ) over each vertical water column. Equa-n11ŷ
tion (35) or (36) determines the change in the surface

pressure required to adjust the vertical velocity at the
bottom to zero, as required by the steplike bottom to-
pography, and is solved subject to the boundary con-
dition determined from (33) and (34) with zero normal
velocity through the boundaries of the model domain.
Once has been determined from (35) or (36), thendps

barotropic horizontal velocity corrections dun11 and
dy n11 are determined by (33) and (34). Note that while
the pressure is fully updated only to the time level n,
the velocity, temperature, and salinity are each fully
updated to the time level n 1 1, as required by the
above scheme.

It is of significance that the above equation for the
surface pressure is linear. All nonlinear effects are in-
cluded through the forcing term, which is fully deter-
mined at the central time level n so that no iterations
are required. As a consequence, the surface pressure can
be determined very efficiently using standard routines
for elliptic equations. Also note that both DieCAST and
CANDIE use the modified version of the stabilized error
vector propagation technique described by Madala
(1978) to determine the surface pressure correction
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FIG. 1. The Arakawa C grid used in DieCAST and CANDIE.

. Roache (1995) discusses this computationally ef-ndps

ficient and numerically stable elliptic marching method
in some detail.

In summary, each time step proceeds as follows. We
first determine the baroclinic contribution pb to the pres-
sure field at time level n and add it to the surface pres-
sure from time level n 2 1 to give an initial estimate
of the pressure field at time level n. The initial trial
fields (ũn11, ), T̃ n11, and S̃ n11 are determined to allown11ỹ
for the pressure gradient, diffusive horizontal fluxes,
advection, and an estimate of the Coriolis force based
on the state variables at the previous two time steps.
We then calculate the advanced trial fields (ûn11, ),n11ŷ
T̂ n11, and Ŝ n11 to include vertical diffusion and any im-
plicit contribution to the Coriolis terms. The surface
pressure correction is then determined to eliminatendps

the depth integrated horizontal divergence of (ûn11,
) over each water column. After numerically solvingn11ŷ

the governing 2D elliptic equation for , the baro-ndps

tropic velocity corrections (dun11, dy n11) are readily cal-
culated through (33) and (34). Adding these velocity
corrections to (ûn11, ) yields the total horizontaln11ŷ
velocity components (un11, y n11) at the end of the time
step. The vertical velocity component wn11 is then de-
termined at each z level by the horizontal divergence of
(un11, y n11) through the continuity equation (4).

4. Spatial discretization and treatment of the
Coriolis force

DieCAST and CANDIE both use a finite difference
scheme based on Cartesian coordinates with unevenly
spaced z levels in the vertical. The Arakawa C grid is
used for the spatial discretization with state variables u,
y , w, and p defined on the staggered grid illustrated in
Fig. 1. Note that temperature, salinity, and density are
defined at p points and vertical variations in p are es-
timated from the overlying density field. The advection

operator is conservative and is standard for the C grid
(see Dietrich 1992).

The C grid is attractive and widely used in the com-
munity (e.g., MICOM of Bleck et al. 1992 and the MIT
model of Marshall et al. 1997) because of the ease with
which the control volume approach can be implemented.
The main weakness of the C grid, on the other hand, is
that the horizontal staggering of the u and y points caus-
es difficulties in estimating the Coriolis terms. DieCAST
and CANDIE use different approaches to deal with this
difficulty.

In DieCAST, the Coriolis force is treated implicitly
(g 5 1). The approach suggested by Dietrich et al.
(1987) and Dietrich et al. (1990) uses a blend of A and
C grids, thus avoiding the computational difficulty men-
tioned above. The key to this approach is to interpolate
the trial velocity components ũn11 and to the pn11ỹ
points and update the advanced trial velocity compo-
nents at the p points by integrating equations that in-
clude both vertical diffusion and Coriolis terms (the
Ekman spiral equations). The updated velocity is then
interpolated back to the staggered u and y points. Note,
however, that the blend of A and C grids may introduce
significant numerical dissipation, as we now discuss.

Let ( , ), calculated using (23)–(26), representn11 n11ũ ỹc c

the trial velocity components at the p points. For ex-
ample, they could be calculated using two-point aver-
aging:

1
n11 n11 n11ũ 5 (ũ 1 ũ ) (37)c,i, j,k i, j,k i11, j,k2

and

1
n11 n11 n11ỹ 5 (ỹ 1 ỹ ). (38)c,i, j,k i, j,k i, j11,k2

The indices i, j, and k denote the east, north, and vertical
coordinates, respectively. The advanced trial velocity
components at the p points ( , ) are determinedn11 n11û ŷc c

by the implicit equations [see (27) and (28)]:

n11] ]ûc,i, j,kn11 n11 n11û 5 ũ 1 gFŷ 1 2Dt K (39)c,i, j,k c,i, j,k c,i, j,k m1 2]z ]z

and

n11] ]ŷ c,i, j,kn11 n11 n11ŷ 5 ŷ 2 gFû 1 2Dt K . (40)c,i, j,k c,i, j,k c,i, j,k m1 2]z ]z

These velocity components are then interpolated back
to the u and y points again to give ûn11 and at then11ŷ
u and y points.

Results show that the smoothing involved in inter-
polating to the p points and back again introduces nu-
merical dissipation. For example, if gF 5 0 and Km 5
0, differences between û and ũ are due solely to the
interpolation scheme. It is easily shown that linear in-
terpolation to the A grid and then back to the C grid is
equivalent to replacing ũi,j,k by 0.25ũi21,j,k 1 0.5ũi,j,k 1
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FIG. 2. Solid lines show the numerical dissipation of wave ampli-
tudes associated with the interpolations used in DieCAST. For com-
parison, the dotted and broken lines show the amplitude reductions
during a single time step with harmonic and biharmonic lateral dis-
sipation, respectively. The friction coefficients for the latter cases are
chosen to exactly eliminate two gridpoint oscillations. Here k is the
wavenumber and Dx is the grid spacing.

0.25ũi11,j,k [i.e., numerical filter weights of (1, 2, 1)/4].
The smoothing effect is greater for waves with shorter
wavelengths. Figure 2 shows the numerical dissipation
of wave amplitudes Â/Ã as a function of the normalized
wavenumber kDx, where Dx is the grid spacing. The
amplitude reduction is about 50% for waves with wave-
lengths of 4Dx (i.e., kDx 5 p/2). Further, this dissipation
is clearly magnified by reducing Dt (Dietrich et al. 1990)
since the interpolations are carried out more times over
a given time interval. The smoothing effect of the in-
terpolation scheme discussed above is nearly equivalent
to harmonic lateral dissipation (]u/]t 5 Ah]2u/]x2) with
the nondimensionalized diffusion coefficient gh 5 AhDt/
(Dx)2 (see Fig. 2).

Two approaches have been suggested to reduce this
numerical dissipation. The standard version of Die-
CAST uses a fourth-order interpolation scheme to re-
duce the dissipation associated with each pair of inter-
polations. Dietrich (1993) shows test cases for a doubly
periodic domain that demonstrate the utility of this ap-
proach for regions that are removed from horizontal
boundaries. The effective filter weights for the fourth-
order interpolation scheme are (1, 218, 63, 164, 63,
218, 1)/256, corresponding to reduced but still signif-
icant numerical dissipation. Figure 2 shows that the am-
plitude reduction using the fourth-order interpolation is
reduced to about 20% for waves with wavelengths of
4Dx. For comparison, we also plot the amplitude re-
duction corresponding to biharmonic lateral dissipation
(]u/]t 5 2Ab]4u/]x4) with the nondimensionalized dif-
fusion coefficient gb 5 AbDt/(Dx)4 (see Fig. 2). Note,
however, that near horizontal boundaries the original
version of DieCAST uses a second-order scheme, and
the associated dissipation remains substantial (see the
discussion of the canyon test problem in the next sec-
tion). Also, this approach still results in dissipation,
which increases as 1/Dt.

A second modification, which further reduces the dis-
sipation, is to interpolate only the changes in velocity
at p points back to the staggered u and y points (e.g.,
Dietrich et al. 1990). Let

n11 n11 n11du 5 û 2 ũ (41)c,i, j,k c,i, j,k c,i, j,k

and
n11 n11 n11dy 5 ŷ 2 ỹ (42)c,i, j,k c,i, j,k c,i, j,k

represent the changes in the trial velocity components
at p points due to the Coriolis and vertical diffusion
terms. Interpolating (duc, dy c) back to the u and y points,
the advanced trial velocity components on the C grid
are determined by

1
n11 n11 n11 n11û 5 ũ 1 (du 1 du ) (43)i, j,k i, j,k c,i, j,k c,i21, j,k2

and

1
n11 n11 n11 n11ŷ 5 ỹ 1 (dy 1 dy ). (44)i, j,k i, j,k c,i, j,k c,i, j21,k2

If this approach is used, then the dissipation associated
with the interpolations is reduced to zero for the special
case gF [ 0 and Km [ 0 considered above. Imple-
mentation of this approach in the standard DieCAST
model can reduce numerical dissipation significantly,
particularly when small time steps are required, but
some dissipation remains. Further work is required to
improve the accuracy adjacent to boundaries. This issue
warrants further investigation as it may be critical for
problems that are strongly influenced by the boundary
conditions (e.g., Haidvogel et al. 1992). An example
from the DieCAST model that includes both of the
above modifications will be discussed in section 6.

One further point should be mentioned regarding the
treatment of the Coriolis term in DieCAST. Although

and are updated using (39) and (40) with gn11 n11û ŷc,i,j,k c,i,j,k

5 1, the surface pressure is computed using (36) and
the associated velocity corrections are computed using
(33) and (34) with g 5 0, respectively, that is, as if the
Coriolis term were being treated explicitly. As noted by
Dietrich et al. (1987), this leads to an error of order F
5 2 fDt. J. Sheng et al. (1997, personal communication)
give an example where this error has significant effect
even for F substantially less than 1.

In CANDIE we choose to treat the Coriolis force
explicitly (g 5 0) and use the standard four-point av-
eraging of u (y) to determine appropriate estimates at
the y (u) locations for use in (23) and (24). This method
is computationally inefficient if the Coriolis force is
treated implicitly since it would require ûn11 and n11ŷ
to be updated at all grid points simultaneously [see Xu
(1994) for an example where this is done].

5. The differences between CANDIE and DieCAST

In the next section we will show results obtained from
both DieCAST (e.g., Dietrich et al. 1990) and CANDIE
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for the test problems considered by HB. As mentioned
in the introduction, CANDIE is a derivative of Die-
CAST obtained by implementing some straightforward
modifications. Many of the changes have been cosmetic,
but a few have important effects on the comparisons to
be shown. The modifications listed below are the dif-
ferences between DieCAST and CANDIE that have con-
sequences for the results of these models. The first two
points are important for the comparisons shown in the
next section. The third point deals with improved ac-
curacy of the sidewall boundary conditions, and the
fourth point is a matter of numerical efficiency for a
specific parameter choice that we use in the next section.
The final two points do not affect results presented in
this paper. They are important, however, for other ap-
plications of CANDIE.

1) CANDIE uses a standard C grid treatment of the
model variables, whereas DieCAST uses a blend of
the A and C grids. In particular, the vertical diffusion
equations in CANDIE are integrated at u and y points
separately, whereas in DieCAST they are calculated
at the pressure points. It follows that in CANDIE
interpolations between A and C grids are avoided.

2) Coriolis terms in CANDIE are treated explicitly (g
5 0) and computed using standard four-point av-
eraging. As pointed out at the end of the last section,
the surface pressure in the present version of
DieCAST is determined by integrating (36) even
though the Coriolis terms are treated implicitly. This
approximation may result in significant error if im-
plicit time stepping is used to increase Dt such that
F is not much less than unity. The tests with
DieCAST reported below have F 5 0.168 for the
homogeneous case and 0.017 for the stratified case.

3) At boundaries, the normal velocity is set to zero in
both DieCAST and CANDIE. The normal flux of
momentum for both the tangential and normal ve-
locities is also set to zero in the original DieCAST
code. CANDIE calculates the horizontal fluxes using
a corrected representation of the coastal boundary
conditions, in which either free-slip or no-slip
boundary conditions are allowed for. The results us-
ing DieCAST reported in the next section also use
the correct representation for the free-slip and no-
slip boundary conditions.

4) In CANDIE, the equations dealing with the implicit
treatment of vertical diffusion are solved through the
inversion of a simple tridiagonal matrix equation.
An iterative approach used in DieCAST was found
to converge very slowly when the vertical eddy vis-
cosity was given a very large value.

5) In contrast with the original version of DieCAST,
CANDIE does not use the ‘‘swamp layer’’ numeric
approach, in which land areas are replaced by shal-
low water regions. Currents over land areas are al-
ways set to zero in CANDIE. An iterative solution
of the pressure equation on a regular domain is used

to eliminate divergence errors in the depth-integrated
volume transport adjacent to land boundaries. The
most recent versions of DieCAST have also been
modified to use this approach (Dietrich et al. 1996).

6) DieCAST does not include an explicit convection
scheme. Tests with CANDIE gave poor results in
areas where static instability develops. The vertical
convection scheme discussed in the appendix of
Wright and Stocker (1992) has been implemented in
CANDIE to efficiently remove static instabilities.

6. Coastal canyon test problems

To provide a standard test case for the intercompar-
ison of coastal ocean models, HB recently formulated
a problem involving the rectification of oscillatory
wind-forced flow over a coastal canyon. The results
produced by a representative selection of models used
by the international community of ocean modelers are
compared in their paper. The models considered include
the GFDL Modular Ocean Model (GFDLM; Bryan
1969; Cox 1984), the GeoHydrodynamics and Environ-
mental Research Model (GHERM; Beckers 1991), the
Miami Isopycnic Coordinate Ocean Model (MICOM;
Bleck et al. 1992), the S-Coordinate Rutgers University
Model (SCRUM; Song and Haidvogel 1994), the Spec-
tral Element Model (SEOM; Iskandarani et al. 1995),
the Semi-Lagrangian Shallow Water Model (SLSWM;
Sanderson 1997); the Semi-Spectral Primitive Equation
Model (SPEM; Haidvogel et al. 1986), and the Princeton
Ocean Model (POM; Blumberg and Mellor 1987). A
brief review of the dynamic and computational attributes
of the above models can be found in HB.

The geometry used in the test problem consists of a
periodic channel with a shelflike depth profile in the
cross-channel direction, an isolated cross-shelf canyon,
and inshore and offshore solid walls (see Fig. 3). The
dimensions of the channel are 128 km in the along-
channel direction and 96 km in the cross-channel di-
rection. Results are determined for a local f -plane ap-
proximation. The coordinates x and y are aligned with
the along-channel and cross-channel directions, respec-
tively.

The circulation in the coastal channel is driven by a
periodic along-channel wind stress, t x, given by

t oxt 5 {1 2 tanh[(2y 2 L )/L ]}, (45)y w2

with t o 5 1024 sin(2pt/Tw) Pa kg21 m3, Ly 5 96 km,
Lw 5 20 km, and Tw 5 10 days. The along-channel
wind stress is relatively uniform near the coast but de-
creases significantly with y over the shelf break region
and is very weak over the deep water near the offshore
wall (see Fig. 3). Detailed discussions of the mean cir-
culation over a coastal canyon driven by a periodic,
along-channel wind forcing can be found in Haidvogel
and Brink (1986).
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FIG. 3. (a) Bathymetry used in the Haidvogel and Beckmann coastal canyon test problems, (b)
the cross-channel distribution of along-channel wind stress and the representation of the bottom
depths obtained with 20 vertical levels at (c) x 5 93 km, and at (d) y 5 19 km. Contours are
labeled in units of meters.

a. A homogeneous coastal canyon experiment

We first consider a homogeneous coastal canyon ex-
periment by setting the density to be uniform every-
where. We use Dx 5 Dy 5 2 km; constant Coriolis
parameter f 5 1024 s21; a linear bottom stress coeffi-
cient, rb 5 3 3 1024 m s21; g 5 9.81 m s22; and Am 5
5 m2 s21. The time step is Dt 5 1728 s or 50 time steps
per day, which is comparable to that used by MOM and
SPEM. Twenty unevenly spaced z levels were used in
the vertical with greater resolution near the upper sur-
face. Cell boundaries are at depths of 0, 10, 20, 30, 40,
60, 79, 107, 149, 209, 295, 417, 585, 807, 1090, 1430,
1812, 2208, 3104, and 4000 m. The solid lines in Figs.
3c and 3d are the bottom profiles corresponding to x 5
63 km and y 5 19 km, respectively, and the dotted lines
correspond to the model representations of the bottom
topography for these sections.

Note that the homogeneous model intercomparisons
made by HB considered depth-independent (2D) cir-
culation by applying the surface wind and bottom stress-
es as uniform body forces over the water column. An
alternative approach, which we use here, is to run a 3D
model with very strong vertical mixing and determine
the depth-mean flow from the 3D model results. To
ensure vertically uniform horizontal currents we use a
vertical eddy viscosity coefficient of 104 m2 s21. With
this eddy viscosity, vertical shear is eliminated over a
depth of 1000 m on a timescale of order 100 s, so that
the entire water column is effectively homogenized ev-
ery time step.

CANDIE was integrated from a state of rest for a

period of 120 days. The model results over the last 30
days (equivalent to three oscillation periods) were av-
eraged to yield time mean (residual) fields as suggested
by HB. The residual surface currents calculated using
CANDIE (see Fig. 4) are dominated by a net flow in
the direction of shelf wave propagation (the prograde
direction) and an anticyclonic gyre over the shallow
water region near the canyon. The currents over the deep
water are relatively weak. The overall circulation pat-
terns produced by CANDIE are consistent with those
estimated by s-coordinate models such as SPEM and
MICOM (compare Fig. 4 with Fig. 7 of HB).

To quantitatively assess the skill of the CANDIE
model, we calculated the along-channel, depth- and
time-averaged residual and compared it with thexztu
results obtained from the other models considered by
HB (Fig. 5; the data points for the coastal models other
than CANDIE were read from Fig. 6 of HB). In the
case of free-slip boundary conditions, the cross-channel
profile of produced by CANDIE agrees reasonablyxztu
well with those produced by all other models except
SLSWM (see Fig. 5a). Unfortunately, there were no
GFDL model results available in this case since the free-
slip boundary conditions are difficult to implement for
the B grid GFDL model. The CANDIE results in Fig.
5a are, therefore, particularly important since they rep-
resent the only results for this test case obtained from
a z-coordinate model. The maximum surface residual

produced by CANDIE is about 12.9 cm
t

|v(z 5 0) |max

s21; the maximum along-channel, depth- and time-av-
eraged current, , is about 3.7 cm s21; and the netxztumax
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FIG. 4. Time mean surface currents over the area marked by the
dashed lines in Fig. 3 using (a) free-slip and (b) no-slip boundary
conditions.

FIG. 5. Intercomparisons of the along-channel, depth- and time-
averaged residuals produced by different models using (a) free-slip
and (b) no-slip boundary conditions. See text for explanations of the
model acronyms.

TABLE 1. Three bulk quantities of mean flow rectification produced
by nine models for the homogeneous coastal canyon experiment.
Here, and are the maximum residual of the surface

t
xzt|v(z 5 0) | umax max

current and the maximum along-channel averaged, depth-mean re-
sidual, respectively. Also, is the net reisdual transport through

xzt
hu

the channel (1 Sv [ 10 6 m3 s21).

Model

Free-slip
t

|v(z 5 0) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

No-slip
t

|v(z 5 0) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

CANDIE
GFDLM
GHERM

12.9

10.8

3.7

3.0

0.340

0.169

11.8
8.0

11.0

2.8
2.1
3.0

0.210
0.0006
0.179

MICOM
POM
SCRUM

14.6
11.9
11.9

3.4
3.7
3.6

0.231
0.055
0.264

20.3 1.4 0.142

SEOM
SLSWM
SPEM

14.6
4.3

12.0

4.1
1.2
3.8

0.309
0.701
0.250

8.7

10.7

2.5

3.2

0.403

0.240

transport through the channel is about 0.325 Sv (1xzt
hu

Sv 5 106 m3 s21). These values again compare well
with the results produced by all other coastal models
except SLSWM (see Table 1).

In contrast with the results for the free-slip case, large
differences occur among the cross-channel profiles of

produced by the various models in the case of no-xztu
slip boundary conditions (cf. Figs. 5a,b). Nevertheless,
the results produced by CANDIE are relatively smooth
and most consistent with the SPEM results. The results
produced by the GFDL model (which only allows no-
slip boundary conditions) are less smooth in spite of the
use of higher horizontal eddy viscosity (15 m2 s21),
which was required for model stability. The maximum
surface residual predicted by CANDIE is

t
|v(z 5 0) |max

about 11.8 cm s21, the maximum value of is aboutxztu
2.8 cm s21, and the net transport is about 0.21 Sv

xzt
hu

in the no-slip case. These values are again very close
to those produced by SPEM (see Table 1).

We have also used CANDIE to investigate the sen-
sitivity of model results to the value of horizontal eddy
viscosity. Figure 6 shows the cross-channel profiles of

using Am 5 5 and 15 m2 s21. Clearly, is sub-xzt xztu u
stantially weaker for higher horizontal eddy viscosity,
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FIG. 6. Comparisons of the along-channel, depth- and time-aver-
aged residuals produced by CANDIE using different horizontal sub-
grid-scale parameterizations in (a) free-slip and (b) no-slip cases. For
comparison, the results produced by the original DieCAST code are
also included.

FIG. 7. Comparisons of the along-channel, depth- and time-aver-
aged, residuals produced by CANDIE using three different vertical
resolutions: (a) free-slip and (b) no-slip cases.

particularly in the no-slip case. When Am is increased
from 5 to 15 m2 s21, the maximum value of isxztumax

reduced by about 20% in the free-slip case and by about
55% in the no-slip case. This result supports the spec-
ulation by Haidvogel and Beckmann that the weaker
currents determined by the GFDL model may be a con-
sequence of the larger value of Am required for model
stability.

An additional question raised by the results of the
GFDL model shown by HB is the role of vertical res-
olution in determining the model results. The models
based on topography-following coordinates have an ad-
vantage in this respect since they can reasonably rep-
resent rapid, but smooth, depth variations even with a
single model grid cell. On the other hand, z-coordinate
models require numerous levels to represent the bottom
topography even though there may be no vertical struc-
ture in the current field. For example, the GFDL model
requires more than 50 vertical levels to achieve con-
vergence for the topography used in the present test
case. Thus, it is clear that the response of a homoge-
neous fluid to depth-independent forcing is most effi-
ciently studied with the use of topography-following
coordinates. However, more realistic problems will re-
quire increased vertical resolution for either type of

model formulation, and it is of interest to consider
whether or not a z-coordinate model can adequately rep-
resent the abrupt topography of this problem with ver-
tical resolution typical of that used in realistic model
simulations.

To test the sensitivity of the CANDIE results to the
number of z levels used, we redid the test problem using
10 and 40 z levels, respectively, and compared the re-
sults with those obtained with 20 z levels (a typical value
used in realistic simulations) in Fig. 7. The cell bound-
aries are at depths of 0, 20, 40, 60, 100, 200, 500, 1000,
2000, and 4000 m for the 10-level case; and at 0, 2.5,
5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 69, 79, 93, 107,
128, 149, 179, 209, 252, 295, 356, 417, 501, 585, 696,
807, 949, 1090, 1260, 1430, 1620, 1812, 2010, 2208,
2656, 3104, 3552, and 4000 m for the 40-level case.

First, consider the comparison between results ob-
tained with 20 and 40 vertical levels. Although there
are some differences in , particularly at the coastxztu
where the relative depth changes between adjacent grid
cells are largest, the differences are much smaller than
the differences between the results of the different s-
coordinate models considered by HB. Even with 10 lev-
els in the vertical the results are within the range of
uncertainty represented by the differences between the
results of the different s-coordinate models. It does not
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TABLE 2. Subgrid-scale parameterizations and statistics of time mean fields at the depth of 100 m for the stratified coastal canyon experiment.
Here, and are the residual current speed and time mean density anomaly from the initial state at the depth of

t t
|v(z 5 100) | Dr (z 5 100)

100 m.

Model

Lateral
viscosity/diffusivity

2 21(m s )
Vertical diffusivity

2 21(m s )
Maximum of

t
|v(z 5 100) |

(cm )21s
Range of

t
Dr(z 5 100)

(kg )23m Comments

CANDIE
CANDIE
GFDLM
GHERM

20/20
20/20
50/50
15/5

2410
2410
2310
2210

9.1
6.8
2.5

13.7

20.038 → 0.002
20.033 → 0.004
20.066 → 0.003
20.013 → 0.014

Free-slip
No-slip
Mixed

MICOM
POM
SPEM

20/10
*0.2/0.2(Sm)

8 7**10 /10

0
0
0

6.3
8.4
8.2

20.153 → 20.099
20.006 → 0.021
20.012 → 0.030 No-slip

* Coefficients for Smagorinsky’s approach.
** Biharmonic lateral viscosity and diffusivity coefficients in units of 4 21m s .

appear that the resolution of bottom topography by z-
coordinate models is a major limiting factor in deter-
mining accurate model results for this particular test
problem. Since this test is designed to represent the
effects of abrupt topography, this is clearly an encour-
aging result for z-coordinate models.

Finally, we consider the significance of the differ-
ences between DieCAST and CANDIE. Results ob-
tained from DieCAST, using the explicit Coriolis term
and a second-order scheme to interpolate the changes
in velocity at p points back to the u and y points dis-
cussed in section 4, are presented in Fig. 6. These results
are not significantly changed if the second-order inter-
polations are replaced with fourth-order interpolations
away from the boundaries. Clearly, DieCAST under-
estimates the residual in both the free-slip and no-xztu
slip cases, and it produces weak retrograde flows near
the inshore wall that are not present in the results from
CANDIE, indicating that numerical dissipation is still
large near vertical boundaries in DieCAST. The differ-
ences are even more substantial if the second-order in-
terpolations are retained and the total velocity at p points
is interpolated back to the u and y points.

b. A stratified coastal canyon experiment

We now consider the stratified coastal canyon ex-
periment discussed by HB. Note that the combined ef-
fects of steep topography and strong stratification have
been a great challenge to all the coastal ocean models
(Haidvogel and Beckmann 1998). To begin the process
of identifying key model sensitivities, HB simply re-
formatted the homogeneous form stress problem dis-
cussed in the last section by relaxing the assumption of
uniform density and body forcing.

The water density in this experiment is initially hor-
izontally uniform but vertically stratified according to

z 2 z
r (z) 5 28.0 2 3.4880 exp 1 2 tanhinit 1 2 1 2[ ]H 3 Hr r

(46)

in units of kg m23, with Hr 5 800 m and ro 5 1000
kg m23. This gives a first baroclinic Rossby radius of
deformation of 40 km in the deepest part of the channel.

The vertical eddy viscosity is given by

z
23 23K (x, y, z) 5 10 1 9.5 3 10 expm 1 2Hk

2z 1 h(x, y)
3 1 1 exp 2 (47)5 6[ ]Hk

in units of m2 s21 with Hk 5 50 m. Therefore, the vertical
eddy viscosity is maximum and approximately equal to
10.5 3 1023 m2 s21 at the top and bottom, and it decays
into the interior with an e-folding scale of Hk (Haidvogel
and Beckmann 1998).

As in the homogeneous problem, we use 20 unevenly
spaced z levels and 2-km resolution in the horizontal
directions, but with a reduced time step of Dt 5 172.8
s, or 500 timesteps per day. The horizontal eddy vis-
cosity and diffusivity coefficients are both set to 20 m2

s21 and the vertical diffusivity coefficient is set to 1024

m2 s21 (see Table 2). The other model parameters are
all set to the same values as in the homogeneous coastal
canyon experiment.

Figure 8 shows four snapshots of the evolving hor-
izontal currents at a depth of 100 m for the case of free-
slip boundary conditions. These results illustrate the
evolution over a single 10-day cycle of the periodic wind
forcing near the end of the model run. The wind switches
from westward to eastward at day 100 and returns to
being westward after day 105. The currents at day 102
are relatively weak everywhere except in the mouth of
the canyon. At days 104 and 106, the currents remain
weak in the far field but are relatively strong over the
canyon and the shelf break. By day 108, the currents
are again relatively weak everywhere except in the
mouth of the canyon.

Figure 9 shows the corresponding evolution of the
density anomaly (Dr, the difference between the density
field at the given time and the initial density field) at
the depth of 100 m. The far-field density anomalies are
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FIG. 8. Snapshots of the currents at a depth of 100 m at time intervals of 2 days for the stratified
coastal canyon experiment with free-slip boundary conditions. The lateral eddy viscosity and
diffusivity coefficients were both set to be 20 m2 s21. The vertical eddy diffusivity was set to be
1024 m2 s21. Note that the wind is eastward at days 102 and 104 and westward at days 106 and
108. Also note that the flow over the canyon is still eastward at day 106, but it is decelerating.

relatively small. At day 102, the near-field density
anomaly is positive close to the downstream canyon wall
but negative over the other areas. At days 104 and 106,
the negative density anomalies are of similar magnitude
but have developed many small-scale features in the
mouth of the canyon. The density anomaly at day 108
is similar to that at day 106, except for a positive density
anomaly in the mouth of the canyon. Note that the winds
are downwelling (upwelling) favorable on the southern
(northern) side of the channel between days 101 and
105, and the situation is reversed from day 106 to day
110. The presence of positive density anomalies in the
northern region on days 104 and 106, and in the southern
region on day 108, can each be attributed primarily to
preceding periods of upwelling favorable winds. How-
ever, the picture is clearly complicated by the persistent
advection by the residual flow field and the variable
bottom topography.

The model results between days 90 and 120 were used
to estimate the rectified flow for this period, as in the
homogeneous experiment. However, as pointed out by
HB, secular trends associated with the continuing evo-
lution of the density field remain present at day 120, so

these results do not correspond to a system in equilib-
rium.

The time mean currents at the depth of 100 m are
weak in the far field but relatively strong over the shelf
break and in the mouth of the canyon (see Fig. 10). Note
that the results in both free-slip and no-slip cases are
very similar, except that the currents are weaker in the
no-slip case. The overall features of the mean flow at
100 m produced by CANDIE are quantitatively com-
parable with those produced by POM and SPEM (com-
pare our Fig. 10 with Fig. 9 of HB).

The time mean density anomaly at 100 m is small in
the far field but large over the shelf break, particularly
on the upstream canyon wall, which is very similar to
the results produced by SPEM and GHERM. Over the
downstream canyon wall and in the mouth of the can-
yon, however, the time mean density anomaly produced
by CANDIE is negative and near zero, quite different
from the positive density anomaly produced by
GHERM, SPEM, and POM. It seems likely that the
differences in the representation of bottom topography
make a significant contribution to these model discrep-
ancies. Given that the z-coordinate model uses a rather
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FIG. 9. Evolution of density anomalies at the depth of 100 m in the stratified coastal canyon
experiment. Otherwise the same as Fig. 8.

crude representation of the bottom, it is tempting to
attribute the observed differences to the inadequacies of
this representation. However, the possibility of signifi-
cant differences associated with pressure gradient errors
in the s-coordinate models cannot be ruled out. Overall,
it is encouraging that the results agree as well as they
do.

The differences between model results may also be
partially a consequence of the different friction param-
eterizations used in the various models [SPEM used
biharmonic friction parallel to s surfaces and POM used
the approach of Smagorinsky (1963) for the lateral dif-
fusivity with zero vertical diffusivity, while CANDIE
was run with Laplacian lateral diffusion (see Table 2)].
To demonstrate the model sensitivity to these subgrid-
scale parameterizations, we consider the results obtained
with CANDIE using different parameterizations. The
results are discussed in terms of three bulk quantities:
the maximum residual at 100 m ; the

t
|v(z 5 100) |max

maximum along-channel, depth- and time-averaged cur-
rent ; and the net transport through the channelxztumax

.
xzt

hu
We first ran CANDIE using different vertical eddy

diffusivity coefficients, Kh 5 1025, 1024, and 1023 m2

s21, with the horizontal eddy viscosity and diffusivity
coefficients both fixed at 20 m2 s21. The maximum re-
sidual and the net transport both

t xzt
|v(z 5 100) | humax

increase with the increased vertical eddy diffusivity co-
efficient (see Table 3). The maximum residual , onxztumax

the other hand, is smallest for Kh 5 1024 m2 s21 and
largest for Kh 5 1023 m2 s21.

Figure 11 shows the cross-channel profiles of forxztu
the three different values of Kh. In contrast to the results
of the homogeneous experiment, is quite large nearxztu
the coast in the stratified experiment. It decreases sig-
nificantly over the inner coastal region and then in-
creases again to a maximum value at about 18 km off-
shore. The cross-channel structures are similar for free-
slip and no-slip boundary conditions, but the residual
is prograde everywhere in the case of free-slip boundary
conditions, whereas there is a band of weak retrograde
flow centered at about 8 km offshore for the no-slip
case. The differences in are not significant betweenxztu
Kh 5 1025 and 1024 m2 s21, suggesting that diffusion
of this magnitude does not play a dominant role in de-
termining the evolution over a timescale of order 100
days. For Kh 5 1023 m2 s21, the solution shows a shift
toward the results obtained for a homogeneous fluid,
indicating that the homogenization over a period of 100
days is significant for this value of Kh. Note that for Kh

5 1023 m2 s21 stratification will be diffusively elimi-
nated over a 100-m depth interval on a timescale of
order 100 days.

We also ran CANDIE using horizontal eddy viscosity
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FIG. 10. Time mean surface flow (left panels) and density anomalies (right panels) in thet
Dr

stratified canyon case over the area marked by the dashed lines in Fig. 3 using (a) free-slip and
(b) no-slip boundary conditions. The lateral eddy viscosity and diffusivity coefficients were both
set to be 20 m2 s21. The vertical eddy diffusivity was set to be 1024 m2 s21.

TABLE 3. Three bulk quantities of mean flow rectification produced by CANDIE as a function of vertical eddy diffusivity Kh in the stratified
coastal canyon experiment. The horizontal eddy viscosity and diffusivity coefficients were set to 20 m2 s21. Here, is the

t
|v(z 5 100) |max

maximum residual speed at the depth of 100 m and is the maximum along-channel averaged, depth-mean residual, respectively. Also,xztu max

is the net residual transport through the channel (1 Sv [ 10 6 m3 s21).
xzt

hu

Vertical eddy diffusivity
2 21(m s )

Free-slip
t

|v(z 5 100) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

No-slip
t

|v(z 5 100) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

1025

1024

1023

8.6
9.0
9.5

1.9
1.7
1.9

0.405
0.413
0.494

6.1
6.6
7.3

1.1
1.0
1.2

0.253
0.275
0.467

and diffusivity coefficients of 10, 20, and 40 m2 s21 with
the vertical eddy diffusivity coefficient fixed at 1024 m2

s21. As expected, the net transport and the maxi-
xzt

hu
mum residual both decrease with the increased lat-xztumax

eral mixing coefficient (Table 4). With no-slip boundary
conditions, the maximum residual also

t
|v(z 5 100) |max

decreases with the increased horizontal mixing. How-
ever, with free-slip boundary conditions, the maximum
residual is smallest using Am 5 Ah 5

t
|v(z 5 100) |max

10 m2 s21. Figure 12 shows the cross-channel profiles
of for three different values of Am and Ah. It isxztu

apparent that the cross-channel variations of are veryxztu
sensitive to variations in the horizontal eddy viscosity
and diffusivity coefficients over this range.

The small-scale density features shown in Fig. 9 are
also sensitive to the variations in the horizontal eddy
viscosity and diffusivity coefficients. Figure 13 shows
the evolution of the density anomaly at the depth of 100
m with Kh 5 1024 m2 s21 but using Am 5 Ah 5 40 m2

s21. The large-scale patterns in Figs. 9 and 13 are quan-
titatively similar. However, the small-scale features pres-
ent in Fig. 9 are substantially reduced in Fig. 13. Note
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FIG. 11. The along-channel averaged, depth-mean residuals for
different values of the vertical eddy diffusivity Kh in the stratified
coastal canyon experiment: (a) free-slip and (b) no-slip boundary
conditions. The horizontal eddy viscosity/diffusivity coefficients were
set to be 20 m2 s21.

FIG. 12. The along-channel, depth- and time-averaged residuals as
a function of cross-channel position for three values of the lateral
eddy viscosity and diffusivity coefficients in the stratified coastal
canyon experiment: (a) free-slip and (b) no-slip boundary conditions.
The vertical eddy diffusivity coefficient was set to be 1024 m2 s21.

TABLE 4. Three bulk quantities of mean flow rectification produced by CANDIE as a function of horizontal eddy viscosity and diffusivity
coefficients in the stratified coastal canyon experiment. The vertical eddy diffusivity was set to Kh 5 1024 m2 s21. Otherwise the same as
in Table 3.

Horizontal eddy
viscosity/diffusivity

2 21(m s )

Free-slip
t

|v(z 5 100) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

No-slip
t

|v(z 5 100) |max

(cm )21s

xztu max

(cm )21s

xzt
hu
(Sv)

10/10
20/20
40/40

9.0
9.0
8.9

2.2
1.7
1.0

0.457
0.413
0.353

7.3
6.6
4.3

1.7
1.0
0.6

0.367
0.275
0.177

that the only differences between these two figures are
that the horizontal eddy viscosity and diffusivity cor-
responding to Fig. 13 are larger by a factor of 2 than
those used in Fig. 9.

While the above results are broadly consistent with
expectations, there is a disconcerting aspect of this test
problem that deserves mention. In both Figs. 11 and 12,
it is apparent that the coastal boundary layer in which
the tangential velocity is reduced to zero in the no-slip
case has not been resolved by the 2-km resolution used
in the tests. An estimate of the distance to which the
coastal boundary effect diffuses over the forcing time-
scale gives some idea of the resolution that would be
required very near the wall to properly represent its

effects. Taking a timescale of t F 5 10/p days and Am

5 20 m2 s21, we estimate this distance to be of order
(Amt F)1/2 ø 2 km. Resolving this boundary layer would
require several grid cells within this distance of the
southern boundary. Unfortunately, this would introduce
a difference between our results and those presented by
HB that would confuse the present intercomparison, but
it would clearly be of interest to examine the effect of
increasing the resolution near the southern boundary.

7. Discussion and conclusions

The primary purposes of this manuscript have been
to present a revised discussion of the basic modeling
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FIG. 13. Evolution of density anomalies at the depth of 100 m at time intervals of 2 days in
the stratified coastal canyon experiment with free-slip boundary conditions. The lateral eddy
viscosity and diffusivity coefficients were both set to be 40 m2 s21. The vertical eddy diffusivity
was set to be 1024 m2 s21.

approach used in the DieCAST model developed by
Dietrich (e.g., Dietrich et al. 1990) and then to verify
the model results against the test cases presented by HB.
One of the distinct features of the DieCAST model is
its usage of a surface pressure formulation rather than
a volume transport streamfunction. The main advantage
of the pressure formulation is its elimination of com-
putational errors associated with ocean-depth fluctua-
tions that appear in the streamfunction formulation (e.g.,
Dukowicz et al. 1993). Note, however, that the latest
version of MOM can use the pressure formulation.

The original version of DieCAST, however, did not
perform well on HB’s test cases. The dominant source
of differences between DieCAST and the other model
results has been traced to excess momentum dissipation
near vertical boundaries associated with the interpola-
tions from the C grid to the A grid and back again.
Away from boundaries, this problem is substantially
reduced (although not eliminated) by using higher-order
interpolations and/or interpolating only changes in ve-
locity back to the C grid. However, the higher-order
interpolations require significant modifications if they
are to be used effectively near vertical boundaries, and
it is found that simply interpolating velocity changes is
not sufficient to eliminate the excessive dissipation ex-
perienced for the test cases considered. We have also

found that the implicit treatment of the Coriolis force
used in the original version of DieCAST suffers from
an unnecessarily large time truncation error, which may
have significant consequences even in the absence of
boundaries.

The problems noted above have led to the develop-
ment of a modified version of DieCAST that we refer
to as CANDIE: the Canadian version of DieCAST.
CANDIE retains the important formulation of the rigid
lid in terms of the surface pressure, but it replaces the
mixed A and C grid formulation for the implicit treat-
ment of the Coriolis force with a standard explicit treat-
ment on the C grid. This simple modification eliminates
the excess dissipation associated with coastal boundaries
and avoids the error in DieCAST’s implicit treatment
of the Coriolis force. We have also shown how the pres-
sure equation must be modified in order to accurately
implement an implicit treatment of Coriolis effects with-
in the present model formulation. Several other modi-
fications of the original DieCAST code are discussed
in section 5, but these are of lesser importance for the
present application.

There has been much debate about advantages and
disadvantages of using either a z-coordinate model or a
s-coordinate model for studies of ocean circulation. The
primary concern about z-coordinate models is that the
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representation of irregular topography by a series of
steps may introduce large truncation errors in the steep
topography regions and poorly resolved bottom in the
weak slope regions [e.g., see Gnanadesikan and Paca-
nowski 1997). For s-coordinate models, the concern is
that truncation errors associated with the calculation of
the horizontal component of the baroclinic pressure gra-
dients in a model with coordinates inclined to the hor-
izontal may cause significant errors.

In assessing predictive skills of widely used coastal
ocean models, Haidvogel and Beckmann (1998) re-
cently proposed an idealized coastal canyon test case
and compared the results of these models. While terrain-
following models in these test cases are in qualitative
structural agreement, the well-known z-coordinate
GFDL Modular Ocean Model has great difficulty in
reproducing similar circulation patterns. Particularly in
the stratified coastal canyon test case, MOM signifi-
cantly underestimated the residual flow over the canyon.
These discrepancies emphasize the question of whether
or not z-coordinate models accurately represent the flow
near steep topography with the vertical resolution typ-
ically used in ocean models.

The generally good agreement shown here between
the results obtained with the z-coordinate CANDIE
model and the s-coordinate models in Haidvogel and
Beckmann’s coastal canyon test cases should be en-
couraging for users of either class of models. The fact
that results produced by CANDIE are very similar to
those produced by terrain-following models such as
SPEM, SCRUM, and POM in the coastal canyon prob-
lems, clearly indicates that the use of z coordinates does
not have such serious negative effects on the model
results as sometimes thought. Similarly, the agreement
between the residual circulation patterns obtained for
the baroclinic test problem with the two different classes
of models indicates that the pressure gradient errors as-
sociated with the s-coordinate models may not be a
cause for great concern. Unfortunately, the lack of an-
alytical solutions for these test problems does not permit
any definitive statements regarding the specific defi-
ciencies of either class of models.
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