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ABSTRACT  New, fourth-order “c” grid Coriolis term treatments are compared with widely
used second-order treatments. Their improved accuracy is demonstrated by a grid conver-
gence study for a relevant linear problem. Such an accuracy improvement is relatively easy
and costs little for low Rossby number flows compared with high Rossby number flows, be-
cause one must consider only the Coriolis and pressure gradient terms in low Rossby number
flows. The “c” grid is favourable for the latter, but the Coriolis terms benefit greatly by the
higher order treatments analysed herein.

RESUME  On compare les applications d’un nouveau terme de quatriéme ordre de Coriolis
de la grille « ¢ » aux applications de deuxiéme ordre grandement utilisées. On démontre
leur meilleure précision par une étude de convergence de grille pour un probléme linéaire
donné. Une telle amélioration de la précision est relativement facile et colite peu pour des
Slux de petit nombre de Rossby comparée aux flux de grand nombre car, avec le petit nombre,
on ne doit considéré que les termes de Coriolis et de gradient de pression. La grille « ¢ » est
Javorable a cette derniére, mais les termes de Coriolis profitent grandement des applications
de plus grand ordre analysées.

1 Introduction

Geophysical flows are generally strongly rotating. The Coriolis terms are much
larger than the advection terms in the earth’s rotating frame for the major flow
components, especially for ocean flows. Thus, rather than focusing on the accuracy
of the advection terms, as is often done, we are more interested in the accuracy of
the dominant Coriolis, pressure gradient and horizontal divergence terms.

Spectral and other Galerkin-like methods often handle these dominant linear
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terms analytically in the time-differenced equations, which gives them a huge ad-
vantage — at the expense of increased computations for the non-linear advection
terms. They are much less efficient if applied with proper lateral boundary condi-
tions in complex ocean geometries. Thus, Galerkin-like methods might be better
suited for representing relatively simple vertical structures, especially in the ocean,
than for horizontal structures. Such an approach has been used successfully in
tidal modelling (Davies and Furnes, 1980). Although vertical variance might be
dominated by a few modes, thermocline dynamics might be difficult to address ac-
curately, because vertical derivatives of frontal-like structures are involved, unless
time and laterally dependent characteristic Galerkin functions are used. Methods
to automate time-dependent basis functions exist, such as described by Dietrich
(1972). An analogous finite-difference approach would be to use a time and lat-
erally dependent vertical grid. Such a grid would be bottom boundary-fit, with no
extra complication.

Thus, although the optimum vertical representation is not clear, finite-difference
methods appear better suited than spectral methods for horizontal representation in
the oceans. More general finite-element methods (Perkins, pers. commun., 1992),
that can be accurately fit to complicated boundaries are also of interest and are
being developed for ocean modelling.

The focus here is to analyse improved horizontal grid methods introduced by
Dietrich et al. (1990), hereafter DRM, in modelling the dominant linear terms. In
particular, we focus on the representation of the Coriolis terms on the staggered
Arakawa “c” grid (Arakawa and Lamb, 1981).

The Coriolis terms dominate the acceleration terms in ocean flows nearly ev-
erywhere, as indicated by the smallness of the Rossby number. For typical ocean
eddies of 200-km width and velocity 10 cm s~!, the Rossby number is O(0.01).
Thus, accurate modelling of ocean flows for low Rossby numbers requires accurate
integration of the Coriolis terms.

Although boundary currents often have smaller scales and larger Rossby num-
bers, their Rossby numbers are still usually quite small. Further, the conventional
Rossby number, based on boundary current width, overestimates the effective ratio
of the advection term to the Coriolis term when the velocity is nearly normal to the
local velocity gradients, which often occurs with boundary currents. (The advection
is exactly zero when the gradient is normal to the velocity, yet the usual Rossby
number scaling gives a misleading finite value.) In assessing the magnitude of the
advection terms relative to the Coriolis terms, which is the relevant ratio here,
the appropriate length scale is the distance along the flow direction over which
order unity variations typically occur — i.e. over which the velocity changes are
comparable with the velocity. This is generally much larger than the width of the
boundary current. (Indeed, this is what characterizes boundary currents.) Of course,
the accuracy of the Coriolis terms helps overall accuracy even when they are less
dominant.

Such Coriolis term accuracy is automatically satisfied by the Arakawa “b” stag-
gered grid of the popular Bryan-Cox ocean model (Bryan and Cox, 1968; Cox,
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1984), especially with the small time step normally used with high resolution.
The reason is that the horizontal velocity components are collocated, so that no
interpolations are needed to evaluate the Coriolis terms.

Unlike the “b” grid, the Arakawa “c” staggered grid, which is much more widely
used in general computational fluid dynamics, has spatial truncation errors in these
terms, because of the interpolations needed to evaluate them. When the Coriolis
terms are large, such truncation errors can dominate the total numerical error,
even when the popular energy-conserving Arakawa scheme is used. Although such
conservation is desirable, it has little to do with accuracy, which is the focus here.

To illustrate the physical impact of such errors, consider an initial value problem
in which all terms other than the Coriolis and local time derivatives are neglected.
If the initial velocity is zero everywhere except at one point, the analytic solution
has zero velocity everywhere except at that point for all time. However, the spatial
averaging required to evaluate the Coriolis terms on the “c” grid necessarily leads to
non-zero values everywhere. Energy is thus dispersed erroneously. Such numerical
dispersion reflects the truncation error that occurs in the interpolations needed to

[T

evaluate the Coriolis terms on the “c” grid.

However, the “c” grid is popular in spite of the performance of its Coriolis terms,
because accurate modelling of geophysical flows also requires accurate treatment of
the pressure gradient and horizontal divergence terms, which are important internal
wave terms. (Vertical velocity divergence and vertical density advection are also
involved, but have no bearing on the choice of the horizontal “b” or “c” grid.) The
“c” grid is more accurate for these terms, because the data that are used for their
centred first derivative finite-difference approximations are more closely spaced
than on the “b” grid. This advantage also applies to higher order approximations.

Thus, for typical low Rossby number geophysical flows, the relative accuracy of
the “b” and “c” grids depends mainly on whether the Coriolis or internal wave terms
dominate. The internal Rossby radius of deformation — the distance an internal
wave travels in one inertial (Coriolis) period — is a scale for which these two
effects (buoyancy and rotation) typically contribute about the same to the local
time derivative. Smaller scales are dominated by the internal wave terms; larger
scales are dominated by the Coriolis terms. Thus, if the largest “b” grid errors occur
for scales of the same order or smaller than the Rossby radius of deformation, and
these scales are resolved by the calculation, the use of a “c” grid usually leads to
smaller errors with the same resolution. Further discussion of the relative merits of
the “b” and “c” grids is given by Messinger and Arakawa (1976), Bateen and Han
(1981), Wajsowicz (1986a, b), Wajsowicz and Gill (1986) and Foreman (1987).

Since the dominant ocean eddy and boundary current scales are comparable with
the Rossby radius of deformation, it follows that the preferred grid for ocean eddy-
resolving calculations is the “c” grid. Notably, the effect of these eddies on the
ocean large-scale circulation has not yet been addressed adequately by turbulence
closure schemes.

Since the “c” grid’s main weakness stems from the interpolations required to
evaluate the Coriolis terms, one is led to try using higher order interpolations for
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this purpose when the flow has a low Rossby number. This, and the relatively
modest computing overhead required, led to the development of new ocean models
based on the Sandia Ocean Modeling System (SOMS) (Dietrich et al., 1987).

Here, we compare the popular standard Arakawa “c” grid Coriolis scheme with
the original SOMS Coriolis scheme and the new higher-order version.

2 Background

The original SOMS “c” grid scheme for the Coriolis terms is described by Dietrich
et al. (1987), and in Appendix 1. This scheme differs from the popular Arakawa
“c” grid schemes and is characterized by its integration of the Coriolis terms at
the pressure cell centres, while using the Arakawa “c” grid as the primary grid
for momentum conservation. This design was motivated by the need for accurate,
efficient boundary-layer modelling.

SOMS is a fully conservative, partially implicit ocean and lake modelling system,
using a fully Eulerian frame with a “c” grid. It uses a separate boundary-fitted,
three-dimensional boundary-layer submodel, which includes a Mellor-Yamada level
2.5 turbulence closure scheme (Mellor and Yamada, 1982). The boundary-layer
submodel is coupled to an overlying free-stream submodel by pressure gradient
and flux matching at their interface. The interface is a prescribed distance from
the modelled basin bottom, such that the boundary-layer submodel contains the
turbulent bottom boundary layer. This approach is motivated by boundary-layer
theory, and is designed for bottom boundary phenomena over general topography.

SOMS started as a bottom ocean model, designed to interface between an eddy-
resolving regional ocean model and the ocean bottom, in studying material dis-
persion from the ocean bottom (funded by the DOE Subseabed Waste Disposal
Program). This application required accurate resolution of ocean eddies, which
clearly can affect vertical mixing and possibly influence boundary-layer separa-
tion. This was a primary consideration in the decision to use an Arakawa “c” grid,
which is best for eddy-resolving calculations, as explained above.

New, low (scheme 2A) and higher order Coriolis term treatments were introduced
to SOMS by DRM. The SOMS schemes (four in all) require interpolation between
the staggered “c” grid velocity locations and the pressure cell centres. The new
higher-order versions (schemes 1B and 2B) differ from the corresponding lower
order ones (schemes 1A and 2A) only by using higher order interpolations.

All four schemes described by DRM, and further analysed here, first partially
update the velocity components at their staggered “c” grid locations. These partial
updates include the effects of all terms except the Coriolis and vertical diffusion
terms (i.e. the partial updates give temporary new values that would result from
assuming these terms are zero). Any desired explicit time integration scheme can be
used for the terms (advection, horizontal diffusion, and pressure gradient) included
in these partial updates.

The time differences (from the partial updates) are then interpolated to the cell-
centred pressure locations and treated as known explicit “source terms” for the
remaining implicitly coupled Coriolis and vertical diffusion terms, which are then
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solved implicitly at each pressure location. This gives the fully updated velocity at
the pressure locations.
Schemes 1A and 1B then simply interpolate the updated velocity back to the

staggered “c” grid. Schemes 2A and 2B replace this step with two steps:

1) The time-difference contributions due to the Coriolis and vertical diffusion terms
at the pressure cell centres are separated from the other contributions.
2) These partial time-difference contributions are interpolated back to the staggered

¢” grid and added to the original partially updated velocities at the “c” grid
locations.

The final step is identical for all four schemes. This step is to “clear out the
divergence” by appropriately modifying the top layer pressure, followed by adding
the velocity response to this modification, as described by Dietrich et al. (1987).

More detailed descriptions of these schemes are given by DRM and in Appendix
1. DRM also describes a promising new “semi-collocated” scheme.

No special problems occur in using the new schemes with variable depth. Vari-
able depth versions similar to the ones analysed by Foreman (1987) should be useful
for continental shelf problems. The new schemes were applied to Lake Neuchatel
(Zuur and Dietrich, 1990) with 263-m resolution and real topography. The results
were in good agreement with observations. Recent results in Gulf of Mexico sim-
ulations with real (NCAR data) topography (Dietrich and Lin, 1993; Dietrich and
Ko, 1993) also show good agreement with observations.

To analyse the new schemes, one can apply them to the full non-linear primitive
equations in a prototype problem. For such systems, analytic solutions usually are
not available, but one can compare them with observations and other model results,
or carry out a grid convergence study, as DRM has done.

One can also apply the new schemes to relevant linear problems, which have
analytic solutions, but there is the danger of simplifying too much. For example,
one could include only the Coriolis and local time derivative terms, and study how
well the schemes model inertial oscillations. However, such oscillations have little
relevance in general circulation modelling, because pure inertial oscillations (and
inertia-gravity waves) have little effect on net displacement during general circu-
lation time-scales. Such oscillations might be more important in the atmosphere,
because of their possible interaction with large-scale precipitation, as noted by
Dietrich and Brunet (1979).

For relevance to general circulation modelling, the pressure-gradient terms must
also be included. This gives the “maximum simplification problem” for relevant
comparison. Here, we address this problem in a grid convergence study with spec-
ified characteristic analytic pressure fields. Errors (rms deviations from exact solu-
tions to the pressure-forced flow) are then used to compare the new schemes with
their lower order versions and with the constant-depth version of the widely used
Arakawa “c” grid scheme.

Although this maximum simplification problem does not include internal wave
dispersion terms, their primary role is to affect geostrophic adjustment. To obtain
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a numerical geostrophic adjustment in the absence of these terms, we use a weak
time damping (except as noted), which selectively filters high-frequency inertial
oscillations. This damping is chosen such that it has little effect on longer time-
scales relevant to general circulation calculations. This is a reasonable first step,
since it is well known that the Arakawa “c” grid is ideal for the internal wave
terms, but not as good for the Coriolis terms. The motivation of our new schemes
is to improve modelling of the Coriolis terms on the “c” grid.

DRM showed that the new, higher-order Coriolis “c” grid schemes greatly im-
prove accuracy in modelling the dominant ocean eddy scales in a prototype ocean
problem. Here, we demonstrate this more conclusively, because

a) the present study focuses on the Coriolis terms, whereas DRM included other
terms that, although small except near boundaries, were only second-order-
accurate

b) the present fourth-order-accurate results have fourth-order-accuracy everywhere,
whereas the Coriolis terms in the DRM study were only second-order-accurate
near the boundary, which was acceptable because the other terms are relatively
large and second-order-accurate there

¢) we include direct comparison with the standard “c” grid Coriolis treatment

For the “b” grid and collocated (non-staggered) grids, analogous higher order
treatment of the pressure gradient and divergence terms would probably lead to
similar improvements.

The present improvement (b) required a minor adjustment of the interpolation
coefficients used nearest the boundary. This improvement is to use a non-centred
fourth-order interpolation scheme, rather than the boundary symmetry conditions
applied in DRM. For example, the new approximation used to interpolate the u-
velocity to the pressure point nearest a western boundary point (one-half grid in-
terval from the boundary) is

u(0.5dx) = cou(0) + cu(dx) + cou(2dx) + c3u(3dx)

where u(0) is a specified boundary value (or function of u(dx)) and u(dx), u(2dx) and
u(3dx) are known interior values. The coefficients cg, ¢, ¢; and c3 are determined
simply by fitting a cubic polynomial through the four known values, and evaluating
the result at x = 0.5dx. This defines a general, unique scheme. There is nothing
special about irregular (staircase) boundaries. The scheme is fourth-order accurate
in general, as reflected by the fourth-order convergence behaviour in Table 1. The
results in Section 3 show that the scheme is also robust. We are presently using it
in multi-decade ocean-basin-scale calculations.

In spite of the boundary accuracy problem mentioned above, DRM showed a
dramatic improvement in accuracy: the improved methods were as accurate with
20-km resolution as the more conventional methods were with 10-km resolution,
with only a few per cent extra computation required per grid point. DRM shows
this in many ways. One is the grid-resolution dependence of the peak rms velocity,
resulting from baroclinic instability. For 40-, 20- and 10-km resolutions, respec-
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TaBLE 1. Normalized rms errors: the time-averaged rms veloc-
ity deviations from the exact solutions of the problem
described in Section 3. The “base” scheme errors are

calculated after interpolation of its staggered “c” grid
velocities to the pressure locations.
Time Grid Size
Step
Scheme (min) 12x12 24 x 24 48 x 48
Base 90 1.0 x 107! 29%x107% 7.7x 1073
1A 90 1.0 x 107! 3.9 %102 1.3 x 1072
2A 90 7.1 x 1072 2.5 x 1072 7.2 x 1073
1B 180 1.7 x 1073 1L.Ix10™* 6.6x10°¢
90 41x 1073 27x10™* 1.7 x 1073
45 1.2x 1072 96x10°* 6.5 x 1073
2B 180 59 x 1074 3.8x 1073 2.4 % 1076
90 1.3x 1073 8.6 x 107 5.6 x 107

45 3.1 x 1073 2.1 x 104 1.4 x 1073

tively, the peak rms velocities were 10.5, 15.2 and 18.3 cm s™! for the original
scheme 1A. For the improved scheme 1B, they were 15.0, 19.2 and 20.9 cm s~!.
Thus, the change in scheme 1B from 20- to 10-km resolution is much smaller than
the change from 40 to 20 km. A reasonable estimate of the converged value would
be about 22 cm s™!. Scheme 1B is closer to this estimated converged value with
20-km resolution than scheme 1A is with 10-km resolution.

3 Comparison of the new schemes and the standard “c” grid scheme

DRM noted that the interpolations used by the new “c” grid Coriolis scheme 1A
lead to truncation errors O((Ax)? JA?). Of course, Ax and At are generally linearly
related owing to numerical stability and efficiency considerations; the result is only
first-order convergence as the resolution is increased. To show that this is not as
bad as it might appear, and to compare the new “c” grid schemes with the standard
Arakawa “c” grid scheme, we consider the following simple linear problem, forced
by a specified bell-shaped pressure field whose amplitude varies with time (see
Fig. 1).

The pressure field is designed such that both pressure and its normal derivative
vanish on the rectangular boundary of the problem domain. The time dependence
is a short-term, early exponential increase, multiplied by a cosine function with a
period of 10 days. This is the simplest problem that can address the numerical dis-
persion effects of various numerical treatments using “c” grid Coriolis terms. Such

dispersion is the main disadvantage of the “c” grid. The mathematical statement of
the problem can be given as follows:

dufot = fv — Ap/Ax
0v [dt = —fu— Ap/Ay

in the rectangular domain (—LX < x < LX), (LY <y < LY). The pressure p is

(1
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normalized by density, and is specified by
plx,y, 1) = A(DP(x,y)
where

A@) = 100[1 — e~ "/M[1 + AMPcos(2ms/1;)]  dynes/cm-cm
P(x,y) = [(LX — x)(LY — y)(LX + x)(LY +y)/(LXLY)]

The initial conditions are u = v = 0. The pressure gradient is evaluated analytically
at each grid point at the start of each time step.

The analytic solution to the above system has 4 = v = 0 on the rectangular
boundary defined by the four lines x = LX, y = LY, x = —LX and y = —LY.
These conditions are used numerically in all “c” grid results.

Although an analytic solution to the coupled system (1) could be written, it is
not of interest here. Our purpose is to compare the errors introduced by the various
Arakawa “c” grid interpolation schemes. To do this, we compare the various “c” grid
approximate solutions with the numerical time-differenced solution of the system
(1) on a collocated grid, using the same time integration scheme, rather than with the
analytic solution. This numerical time-differenced solution is derived using analytic
derivatives of the specified pressure at the discrete grid points, as the “c” grid
solutions are. The collocated grid solution can be called the “analytic solution of the
time-differenced system”, since no spatial averaging is carried out. The difference
between the “c” grid solution and the analytic solution of the time-differenced
equations is then due only to the errors introduced by the spatial interpolation
scheme (see Table 1 caption). The errors are thus not directly affected by the
time-difference scheme used.

Conventional “c” grid staggering is used in all “c” grid results. (The outermost
pressure points are one-half grid interval inside the boundary. The outermost normal
velocity points are on the boundary and the nearest tangential components are one-
half grid interval inside.)

Table 1 shows results for 30-day integrations: in all runs f = 8.342 x 10~ s~!,
T; = 1 day, 2 = 10 days, AMP = |, and LX = LY = 1000 km. This gives a peak
geostrophic velocity of about 2.87 cm s™! after the early transient.

All Table 1 runs use the FLTW time integration scheme (Roache and Dietrich,
1988), with FLT = 0.2. This scheme is a time-filtered leap-frog scheme. At the
end of each time step, there are three known time levels of data. The initial value
for the next time step is calculated from the three values. If p;, p, and p; are the
successive values, the initial value, p, for the next time step is calculated as follows:

p = (1 —FLT)p, + FLT(p; + p3)/2

where O<FLT=1.

Here, p for the next time step corresponds to p; for the present step. This reduces
to the leap-frog scheme when FLT = 0. When FLT > 0, selective (high-frequency)
time damping results. In the present case, this damps inertial oscillations, but hardly
affects the response to the 10-day time-scale shown in Fig. 1. This damping is
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analogous to internal wave effects associated with terms not included in the model
problem.

Table 1 compares time-average spatial rms errors for the various schemes with
spatial resolutions of 12, 24 and 48 grid intervals (in both directions) and with
time steps of 45, 90 and 180 min. These “errors” are actually deviations of the
“c” grid velocities, interpolated to the cell centres, from the “exact” velocities
calculated on a collocated grid. The latter are truly exact solutions to the time-
differenced equations, since no spatial interpolations are involved. Since the same
time integration schemes, and time step sizes, are used in the comparison with the
“c” grid results, it follows that the exact resuits differ from the “c” grid results only
because of spatial truncation errors associated with “c” grid interpolations. The rms
errors are thus a direct measure of the accuracy of the various “c” grid schemes.
Again, we note that the errors are not directly affected by the time integration
schemes; they are only due to spatial interpolations.

The standard base scheme in Table 1 is the Arakawa “c” grid scheme that is
popular among “c” grid modellers, in which the v velocity components are inter-
polated to the u points in evaluating the Coriolis term and vice versa. The new
schemes (1A, 1B, 2A and 2B) are described in Section 2 and by DRM.

Table 1 compares the new higher-order Coriolis schemes with their lower-order
counterparts and with the standard “c” grid scheme for typical space and time
resolutions. The results show that the higher-order schemes are much more accurate.
This greatly improved accuracy with relatively low overhead (only a few operations
per grid point per time step) shows that the new higher-order schemes are substantial
improvements. Similar accuracy improvement could be obtained by using higher-
order treatment of the base scheme.

Table 1 also shows that, for a fixed resolution, the errors actually increase with
decreasing time step. This is due to the extra interpolations, as noted by DRM.
However, since time-step decrease is generally associated with spatial resolution
increase, the relevant convergence rate comparison is found by going diagonally
downward toward the right in Table 1, or by comparing results for equal spatial
resolution and time step. In either case, the higher-order schemes are clearly more
accurate, whereas the lower-order schemes are competitive with one another.

Although schemes 2A and 2B appear better than schemes 1A and 1B, we have
found that the latter schemes allow longer time steps. Scheme 1B might be the best
overall scheme, because longer time steps also mean fewer dispersive interpolations.

Figure 2 shows solution and error plots as a function of time and position along

Fig.2 Mid-latitude (y = 0) x—t flow speed (a, b) and speed error (velocity error magnitude; ¢, d).
(a) Exact solution for FLT = 0.2; maximum is 4.73 cm sl At 60 days, the maximum is
2.8687 cm s~!. (b) Exact solution for FLT = 1.0; maximum is 3.99 cm s~L. At 60 days, the
maximum is 2.8696 cm s~!. (¢) Scheme 1B error for FLT = 0.2; maximum is 0.0022 cm sl
The time-averaged rms error is 0.00069 cm s~!. (d) Scheme 1B error for FLT = 1.0; maximum
is 0.00063 cm s™!. The time-averaged rms error is 0.00020 cm s~'. The contours (a) and (b)
are uniformly spaced with interval 0.5 cm s~! so that contour level 5 is 2.5 cm s~L. Plots ()
and (d) are differences between the (a) and (b) exact solutions and those derived using scheme
1B for the Coriolis terms on a staggered Arakawa “c” grid. The error contours are uniformly
spaced between 0 and the maxima specified above.
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the line y = 0 in the problem formulation (1). This line is similar to other lines
because of the symmetries and linearity of the problem. The resolution is 24 x 24
and the time step is 90 min. The runs are 60 days. All other parameters are as in
the Table 1 runs, except T, = 0.1 day, which triggers a stronger inertial oscillation.

Plots 2a and b show the exact solution to the time-differenced equations for FLT
= 0.2 (as in the Table 1 runs) and FLT = 1. These show early inertial oscillations,
whose decay leads to the periodic quasi-geostrophic solution forced by the specified
time-varying pressure gradient. Using FLT = 1.0 leads to more rapid decay of the
high-frequency intertial oscillations, but has little effect on the long-term quasi-
geostrophic flow. The difference between the two solutions at 60 days is less than
0.001 cm s during the first few inertial periods, it is as large as 0.7 cm s~!.
This shows that FLT = 1 quickly damps the inertial oscillation, while having an
extremely small effect on the response to the 10-day pressure oscillation.

Plots 2¢ and d show the difference between the scheme 1B numerical solution
and these exact solutions, using the same FLT values. The time-averaged rms errors,
conespondmg to those in Table 1, for FLT = 0.2 and FLT = 1 are 6.9 X and 2.0
x 10~* cm s~}, respectively. The respective maximum error values of 2.18 X 10-3
and 6.3 x 1074 cm s~! occur during the early transient. The early high-frequency
error oscillations reflect errors in representing the rapidly varying transient free
inertial oscillation. The much smaller low-frequency error oscillations reflect much
smaller errors in the response to the more slowly varying 10-day pressure forcing
oscillation.

Thus, Fig. 2 shows that while the inertial oscillations decay due to the time filter
(which is similar in effect to internal gravity wave effects that are not included
in this problem), the solution approaches a quasi-geostrophic balance with a much
smaller error. This clearly shows that the new schemes are more accurate for quasi-
geostrophic geophysical modes than for transient inertial oscillations. The latter are
relatively unimportant in general circulation calculations as noted in Section 2. As
also noted in Section 2, such quasi-geostrophic modes would not be included in
initial value problems that address only the Coriolis terms. Thus, analyses of such
problems have little relevance to the application of these new schemes to quasi-
geostrophic flows.

4 Concluding remarks

The Table 1 results clearly demonstrate that the higher-order Coriolis term treat-
ments on an Arakawa “c” staggered grid greatly improve accuracy for low Rossby
number flows. Similar improvements would result from treating other large linear
terms with higher order for both the “c” and “b” grids. This could approach the
accuracy of spectral methods without the associated computational cost and limita-
tions. The potential payoff is much larger than could be achieved by more accurate
treatment of the momentum advection terms. The present improvements come with
relatively little computational cost, because of the simplicity of the Coriolis terms.

Carrying this philosophy a bit further, one might also consider a more accurate
treatment of the vertical density advection term, because of its direct effect on the
important Rossby radius of deformation, as Dietrich and Lin have done (1993).
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Although horizontal advection is also important, the vertical advection term is
generally associated with faster internal wave time-scales and thus might justify
more careful treatment.

The O((Ax)? /Af) truncation errors noted by DRM affect mainly the relatively
small non-geostrophic (more generally, out-of-balance) part of the flow. However,
errors still remain in the steady and slowly varying quasi-geostrophic flow compo-
nents owing to the Coriolis term interpolations, but all errors are greatly reduced
by using higher-order interpolations, as clearly demonstrated by Table 1.
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Appendix 1: The new “c” grid Coriolis schemes
Here, we describe the new schemes 1A and 1B in detail as in DRM. For additional
discussion, and a detailed description of schemes 2A and 2B, see DRM.

We describe these schemes with reference to simplified equations. Since the
distinguishing features of the methods concern only the time derivative terms,
the Coriolis terms and the vertical diffusion terms of the momentum equations, the
remaining terms are lumped into U and V, and the simplified momentum equations
are

%11=U+fv+uz

a’ (A-1)
v

E —V—-ﬁ4+vz

where uz and vz are the vertical diffusion terms and f is the Coriolis parameter
in the Coriolis acceleration terms, which varies only with latitude. In the model
problem of the main text, U and V contain only the pressure gradient, and uz and
vz are zero.

a Scheme 1A
This is the SOMS algorithm described by Dietrich et al. (1987). The procedure is
as follows:

1) Calculate the U(i,j, k) and V(i,j, k) terms in the following schematic repre-

669

sentation of the staggered “c” grid control volume equations:
u(i+ 1h,jkyn+1) = u(i + 1, j, k,n) + At[UG + Vo, j k) +fv +uz]

A-2
v(i,j+ ) kn+ 1) = v(i,j+ Vs keyn) + At[V (i, j + 1h,k) — fu+ vz] (A-2)

The U and V terms are integrated explicitly (in time).
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2) Interpolate the explicit terms U and V, and the old time level u and v velocity
components to the p locations, using simple two-point centred averages:

UG, j, k) = [UG + 1), k) + UG — Y, j,5)1/2

V3, j, k) = [V, j+ Yo, k) + V(iyj = Y2, K)1/2
u(i,j, k,n) = [u@ + 1, j, k,n) + u(i — l/z,j, k, n)]/2
v(i,j, k,n) = [v(i,j+ \h,kyn) + v(i,j — 1o, k,n)]/2

(A-3)

3) Integrate the full equations, including the implicitly coupled Coriolis and
vertical diffusion terms at the p locations:

u(i,j kyn+1) =u(l,j, k,n)

+ AU, j k) +folyj, kyn+ 1)+ uz(i,j, kyn + 1) (At
' -4)
v(irj, kyn+ 1) = v(i,j k)

+ AtV (i,j, k) —fuli,j, k,n+1)+ vz(i,Jj, k,n+1)]

4) Interpolate the results from step (3) back to the staggered u and v locations:
u(i + 1, j,k,n+1) = [u(i,j,vk,n + D) +u(i+1,j,k,n+1)]/2

A-5

v(i,j+ o, kyn+ 1) =[v(,j, k,n+ D+ v(i,j+1,kn+1)]/2 (B>

5) Clear out the divergence of the barotropic mode (vertically averaged horizon-

tal flow) by solving a two-dimensional Poisson equation for the surface pressure

correction “dp” (see Dietrich et al., 1987); correcting the pressure gradient in the

U and V terms in (A-1); and adding the effects of the corrected pressure gradient

(the correction is independent of depth) everywhere to the new u and v velocity
components:

ui + 1/27j7 kan +D)=u(+ 1/2’j7 kvn +1)+ At[dp(i +1,/)— dp(l’])]

. (A-6)
v(i,j+ ' kon+ 1) = v(i,j+ 1k, n+ 1) + Atldp(i,j + 1) — dp(i, )]

This adjustment is performed explicitly, without implicit coupling to Coriolis terms.
6) Calculate the vertical velocity by integrating the incompressibility equation.
7) Apply the “filtered leapfrog™ updating scheme described in Section 3 to start

the next time step.

b Scheme IB

Scheme 1B is like scheme 1A except the interpolations between the p locations
and the “c” grid staggered u and v locations are performed with higher accuracy.
In particular, instead of interpolating the two nearest locations to the central point,
a cubic is fit through four nearby locations, and the result is evaluated at the central
location. For example, let four successive u values along a latitude be u(i),i = 1,4.
Then, the original, lower-order interpolation scheme used in scheme 1A is given
bv

~J

u(i + 1) = [u(i) +u(i + 1)]/2 (A7)
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and the new higher-order interpolation used in scheme 1B is

u(i + 15y = {90u(@) + ui + 1] — [u(i — 1) + u(i + 2)1}/16

(A-8)
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