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ABSTRACT New,fourth-order ‘c” grid Coriolis term treatmentsarecomparedwith widely
usedsecond-ordertreatments.Their improvedaccuracyis demonstratedby a grid conver-
gencestudyfor a relevantlinearproblem.Such an accuracyimprovementis relativelyeasy
andcosts littie for low Rossbynumberfiowscomparedwith high Rossbynumberfiows,be-
causeonemustconsideronly the Coriolis andpressuregradientternis in low Rossbynumber
flows. The “c” grid is favourablefor thelatter, but the Coriolis termsbenefitgreatlyby the
higherordertreatmentsanalysedherein.

RSUM On comparelesapplicationsd’un nouveautermede quatrièmeordre de Coriolis
de la grille « c » aux applicationsde deuxièmeordre grandementutilisées. On démontre
leur meilleureprécisionpar uneétudedeconvergencedegrille pour un problèmelinéaire
donné. Une telle améliorationde la précisionestrelativementfacileet coûtepeupourdes
flux depetitnombredeRossbycomparéeauxfluxdegrandnombrecar, aveclepetitnombre,
on nedoit considéréquelestermesdeCoriolis et degradientdepression.La grille « c» est
favorableàcettedernière,mais les termesde Coriolisprofitent grandementdesapplications
deplus grandordreanalysées.

i Introduction
Geophysicalflows are generally strongly rotating. The Coriolis terms are much
larger than the advectionterms in the earth’s rotating frame for the major flow
components,especiallyfor oceanflows. Thus, ratherthan focusingon theaccuracy
of the advectionterms,as is oftendone,we are moreinterestedin the accuracyof
the dominantCoriolis, pressuregradientand horizontaldivergenceterms.

Spectral and other Galerkin-like methodsoften handie thesedominant linear
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termsanalytically in the time-differencedequations,which gives them a hugead-
vantage— at the expenseof increasedcomputationsfor the non-linear advection
terms.They are much less efficient if appliedwith proper lateralboundarycondi-
tions in complex oceangeometries.Thus, Galerkin-like methodsmight be better
suitedfor representingrelatively simplevertical structures,especiallyin theocean,
than for horizontal structures.Such an approachhas been usedsuccessfullyin
tidal modelling (Davies and Fumes, 1980). Although vertical variancemight be
dominatedby a few modes,thermoclinedynamicsmight be difficult to addressac-
curately,becauseverticalderivativesof frontal-likestructuresare involved,unless
time and laterally dependentcharacteristicGalerkin functions are used.Methods
to automatetime-dependentbasis functions exist, such as describedby Dietrich
(1972). An analogousfinite-differenceapproachwould be to usea time and lat-
erallydependentverticalgrid. Sucha grid would be bottom boundary-fit,with no
extracomplication.

Thus,althoughthe optimum verticalrepresentationis not clear,finite-difference
methodsappearbettersuitedthan spectralmethodsfor horizontalrepresentationin
theoceans.More generalfinite-elementmethods(Perkins,pers. commun.,1992),
that can be accuratelyfit to complicatedboundariesare also of interestandare
being developedfor oceanmodelling.

The focus here is to analyseimproved horizontal grid methodsintroducedby
Dietrich et al. (1990),hereafterDRM, in modelling the dominantlinear terms.In
particular,we focus on the representationof the Coriolis terms on the staggered
Arakawa“c” grid (ArakawaandLamb, 1981).

The Coriolis terms dominate the accelerationterms in oceanflows nearlyev-
erywhere,as indicatedby the smallnessof the Rossbynumber. Fbr typical ocean
eddiesof 200-km width andvelocity 10 cm s1, the Rossby numberis 0(0.01).
Thus,accuratemodellingof oceanflows for low Rossbynumbersrequiresaccurate
integrationof the Coriolis terms.

Although boundarycurrentsoftenhavesmallerscalesand larger Rossbynum-
bers,their Rossbynumbersare still usually quite small. Further,the conventional
Rossbynumber,baSedon boundarycurrentwidth, overestimatestheeffectiveratio
of the advectiontermto the Coriolis termwhen thevelocity is nearlynormalto the
local velocity gradients.which oftenoccurswith boundarycurrents.(The advection
is exactly zero whenthe gradient iS normal to the velocity, yet the usual Rossby
numberscalinggives a misleadingfinite value.) In assessingthe magnitudeof the
advection terms relative to the Coriolis terms,which is the relevant ratio here,
the appropriatelength scaleis the distancealong the ftow direction over which
order unity variations typically occur — i.e. over which the velocity changesare
comparablewith the velocity. This is generallymuch larger than the width of the
boundarycurrent.(Indeed,this is whatcharacterizesboundarycurrents.)0f course,
the accuracyof the Coriolis terms helpsoveraîl accuracyevenwhenthey are less
dominant.

Such Coriolis term accuracyis automaticallysatisfiedby the Arakawa “b” stag-
gered grid of the popular Bryan-Cox oceanmodel (Bryan andCox, 1968; Cox,



On Modelling GeophysicalFlows Having Low RossbyNumbers I s~

1984), especiallywith the small time step normally usedwith high resolution.
The reasonis that the horizontal velocity componentsare collocated,so that no
interpolationsare neededto evaluatethe Coriolis terms.

Unlike the “b” grid, theArakawa“c” staggeredgrid, which is much morewidely
usedin generalcomputationalfluid dynamics,hasspatial truncationerrorsin these
terms,becauseof the interpolationsneededto evaluatethem. Whenthe Coriolis
terms are large, such truncation errors can dominate the total numerical error,
evenwhen the popularenergy-conservingArakawa schemeis used.Althoughsuch
conservationis desirable,it has littie to do with accuracy,which is thefocushere.

To illustratethephysical impactof sucherrors,consideran initial valueproblem
in which ah termsother thanthe Coriohis and local time derivativesare neglected.
If the initial velocity is zero everywhereexceptat one point, the analyticsolution
has zero velocity everywhereexceptat that point for ail time. However,the spatial
averagingrequiredto evaluatetheCoriolis tenuson the “c” grid necessarilyleadsto
non-zerovalueseverywhere.Energyis thusdispersederroneously.Suchnumerical
dispersionreflects the truncationerror that occursin the interpolationsneededto
evaluatethe Coriolis termson the “c” grid.

However,the “c” grid is popularin spiteof theperformanceof its Coriolis terms,
becauseaccuratemodellingof geophysicalflows alsorequiresaccuratetreatmentof
thepressuregradientandhorizontaldivergencetenus,which are importantinternai
wave tenus. (Vertical velocity divergenceand vertical density advectionare also
involved, buthaveno bearingon the choiceof the horizontal“b” or “c” grid.) The

c gnd is more accuratefor theseterms,becausethe datathat are usedfor their
centred first derivative finite-differenceapproximationsare moreclosely spaced
than on the “b” grid. This advantagealso appliesto higherorder approximations.

Thus, for typical low Rossbynumbergeophysicalflows, the relativeaccuracyof
the “b” and“c” grids dependsmainlyon whetherthe Coriolis or internalwaveterms
dominate.The intemal Rossbyradiusof deformation— the distancean internal
wave travels in one inertial (Coriolis) period — is a scale for which thesetwo
effects (buoyancyand rotation) typically contributeabout the sameto the local
time derivative. Smaller scalesare dominatedby the internal wave tenus;larger
scalesare dominatedby theCoriolis terms.Thus, if the largest“b” grid errorsoccur
for scalesof the sameorderor smallerthan the Rossbyradiusof deformation,and
thesescalesare resolvedby the calculation,the useof a “c” grid usuallyleadsto
smallererrorswith the sameresolution.Furtherdiscussionof therelativemerits of
the “b” and “c” grids is givenby MessingerandArakawa (1976), Bateenand Han
(1981),Wajsowicz(1986a,b), WajsowiczandGill (1986) andForeman(1987).

Since thedominantoceaneddyandboundarycurrentscalesare comparablewith
the Rossbyradiusof deformation,it follows that thepreferredgrid for oceaneddy-
resolving calculationsis the “c” grid. Notably, the effect of theseeddieson the
oceanlarge-scalecirculationhasnot yet beenaddressedadequatelyby turbulence
closureschemes.

Since the “c” grid’s main weaknessstemsfrom the interpolationsrequired to
evaluatethe Coriolis tenus,one is led to try usinghigherorder interpolationsfor
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this purposewhen the flow has a low Rossby number. This, and the relatively
modestcomputingoverheadrequired,led to the developmentof new oceanmodels
basedon the SandiaOceanModeling System(SOMS)(Dietrich et al., 1987).

Here,we comparethe popularstandardArakawa “c” grid Coriolis schemewith
the original SOMS Coriolis schemeand the new higher-orderversion.

2 Background
Theoriginal SOMS “c” grid schemefor theCoriolis tenusis describedby Dietrich
et al. (1987), and in Appendix 1. This schemediffers from the popularArakawa
“c” grid schemesand is characterizedby its integrationof the Coriolis terms at
the pressurecell centres,while usingthe Arai=awac gnd as the primary grid
for momentumconservation.This designwas motivatedby the needfor accurate,
efficient boundary-layermodelling.

SOMS is afully conservative,partially implicit oceanandlakemodellingsystem,
using a fully Eulerian frame with a “c” grid. Lt usesa separateboundary-fitted,
three-dimensionalboundary-layersubmodel,which includesa Mellor-Yamadalevel
2.5 turbulenceclosurescheme(Mellor and Yamada,1982). The boundary-layer
submodelis coupledto an overlying free-streamsubmodelby pressuregradient
and flux matching at their interface.The interfaceis a prescribeddistancefrom
the modelledbasin bottom, such that the boundary-layersubmodelcontainsthe
turbulentbottom boundarylayer. This approachis motivated by boundary-layer
theory, and is designedfor bottom boundaryphenomenaover generaltopography.

SOMS startedas a bottomoceanmodel,designedto interfacebetweenan eddy-
resolving regionaloceanmodel and the oceanbottom, in studyingmaterial dis-
persionfrom the oceanbottom (fundedby the DOE SubseabedWasteDisposal
Program).This applicationrequired accurateresolution of oceaneddies, which
clearly can affect verticalmixing andpossibly influence boundary-layersepara-
tion. This wasa primary considerationin the decisionto usean Aralcawa“c” grid,
which is best for eddy-resolvingcalculations,as explainedabove.

New, low (scheme2A) andhigherorder Coriolis tenutreatmentswereintroduced
to SOMS by DRM. The SOMS schemes(four in ah) require interpolationbetween
the staggered“c” grid velocity locations and the pressurecell centres.The new
higher-orderversions(schemesLB and 2B) differ from the correspondinglower
order ones (schemeslA and2A) only by usinghigherorder interpolations.

All four schemesdescribedby DRM, and further analysedhere, first partiahly
updatethevelocity componentsattheir staggered“c” grid locations.Thesepartial
updatesinclude the effects of all tenusexceptthe Coriolis andvertical diffusion
terms (i.e. the partial updatesgive temporarynew values that would result from
assumingthesetenusarezero). Any desiredexplicit time integrationschemecanbe
usedfor the tenus(advection,horizontaldiffusion, andpressuregradient)included
in thesepartial updates.

Thetime differences(from the partial updates)are then interpolatedto the celi-
centredpressurelocations and treatedas known explicit “source tenus” for the
remainingimplicitly coupledCoriohis andverticaldiffusion tenus,which are then
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solvedimplicitly at eachpressurelocation.This gives the fully updatedvelocity at
the pressurelocations.

SchemeslA and lB then simply interpolatethe updatedvelocity back to the
staggered“c” grid. Schemes2A and2B replacethis stepwith two steps:

1) Thetime-differencecontributionsdueto theCoriolis andverticaldiffusion tenus
at the pressurecell centresareseparatedfrom the othercontributions.

2) Thesepartialtime-differencecontributionsare interpolatedbackto thestaggered
“c” grid and addedto the original partially updatedvelocities at the “c” grid
locations.

The final step is identical for all four schemes.This step is to “clear out the
divergence”by appropriatelymodifying the toplayerpressure,followed by adding
the velocity responseto this modification,as describedby Dietrich et al. (1987).

Moredetaileddescriptionsof theseschemesaregiven by DRM andin Appendix
1. DRM also describesa promisingnew “semi-collocated”scheme.

No specialproblemsoccur in usingthe newschemeswith variabledepth.Vari-
abledepthversionssimilarto theonesanalysedby Foreman(1987)shouldbeuseful
for continentalshelfproblems.The new schemeswere appliedto LakeNeuchatel
(Zuur andDietrich, 1990) with 263-m resolutionandreal topography.The results
were in goodagreementwith observations.Recentresultsin Gulf of Mexico sim-
ulations with real (NCAR data)topography(Dietrich andLin, 1993; Dietrich and
Ko, 1993) also showgood agreementwith observations.

To analysethe new schemes,onecanapply themto the full non-linearprimitive
equationsin a prototypeproblem.Forsuch systems,analyticsolutionsusuallyare
flot available,butonecancomparethem with observationsandothermodelresults,
or carryout a grid convergencestudy, as DRM hasdone.

Onecan also apply the new schemesto relevant linear problems,which have
analytic solutions,but there is the dangerof simplifying too much. Forexample,
onecould includeonly theCoriolis andlocal time derivativetenus,andstudyhow
well theschemesmodel inertial oscillations.However, suchoscillationshavelittle
relevancein generalcirculationmodelling, becausepureinertial oscillations(and
inertia-gravity waves)have little effect on net displacementduring generalcircu-
lation time-scales.Such oscillationsmight be more importantin the atmosphere,
becauseof their possibleinteractionwith large-scaleprecipitation, as noted by
Dietrich andBrunet (1979).

Forrelevanceto generalcirculationmodelling, the pressure-gradienttenusmust
also be included.This gives the “maximum simplification problem” for relevant
comparison.Here,we addressthis problemin a grid convergencestudywith spec-
ified characteristicanalyticpressurefields. Errors(nus deviationsfrom exactsolu-
tions to the pressure-forcedflow) are then usedto comparethenew schemeswith
their lowerorder versionsandwith the constant-depthversionof the widely used
Arakawa“c” grid scheme.

Although this maximum simplification problerudoesnot include intemal wave
dispersiontenus,their primary role is to affect geostrophicadjustment.To obtain
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a numericalgeostrophicadjustmentin theabsenceof theseterms,we usea weak
time damping (exceptas noted), which selectivelyfilters high-frequencyinertial
oscillations. This damping is chosensuch that it haslittle effect on longer time-
scalesrelevant to generalcirculation calculations.This is a reasonablefirst step,
since it is well known that the Arakawa “c” grid is ideal for the internal wave
tenus,but not as good for the Coriolis tenus.The motivationof our new schemes
is to improve modellingof the Coriolis tenuson the “c” grid.

DRM showedthat the new, higher-orderCoriolis “c” grid schemesgreatly im-
proveaccuracyin modelling the dominantoceaneddy scalesin a prototypeocean
problem.Here,we demonstratethis moreconclusively,because

a) the presentstudyfocuseson the Coriolis tenus,whereasDRM includedother
tenus that, although small except nearboundaries,were only second-order-
accurate

b) thepresentfourth-order-accurateresultshavefourth-order-accuracyeverywhere,
whereasthe Coriolis tenus in theDRM study wereonly second-order-accurate
nearthe boundary,which was acceptablebecausetheother tenusare relatively
largeandsecond-order-accuratethere

c) we includedirect comparisonwith the standard“c” grid Coriolis treatment

For the “b” grid andcollocated(non-staggered)grids, analogoushigher order
treatmentof the pressuregradientanddivergencetenuswould probablylead to
similar improvements.

The presentimprovement(b) requireda minor adjustmentof the interpolation
coefficientsusednearestthe boundary.This improvementis to use a non-centred
fourth-orderinterpolation scheme,ratherthan the boundarysymmetryconditions
applied in DRM. For example,the new approximationusedto interpolatethe u-
velocity to the pressurepoint nearesta westernboundarypoint (one-haîfgrid in-
terval from the boundary)is

u(0.5dx) = cou(0)+ c1u(dx) + c2u(2U)+ c3u(3dx)

whereu(0) is a specifiedboundaryvalue(or functionof u(dx))andu(di), u(2dx)and
u(3dx)are known interior values.The coefficientsco, c1, c2 and c3 are determined
simply by fitting acubic polynomial throughthe four known values,andevaluating
the result at x 0.5dx. This definesa general,unique scheme.There is nothing
specialabout irregular (staircase)boundaries.The schemeis fourth-orderaccurate
in general,as reflectedby thefourth-orderconvergencebehaviourin Table 1. The
resultsin Section3 showthat the schemeis also robust.We are presentlyusing it
in multi-decadeocean-basin-scalecalculations.

In spite of the boundaryaccuracyproblem mentionedabove,DRM showeda
dramaticimprovementin accuracy:the improved methodswere as accuratewith
20-km resolution as the moreconventionalmethodswere with 10-km resolution,
with only a few per centextracomputationrequiredpergrid point. DRM shows
this in many ways. Oneis thegrid-resolutiondependenceof thepeaknusvelocity,
resulting from baroclinic instabilitv. For 40-, 20- and i 0-km resolutions,respec-
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TABLE 1. Normalizednns en-ors: the time-averagedrms veloc-
ity deviationsfrom the exactsolutionsof theproblem
describedin Section 3. The “base” schemeen-orsare
calculatedafter interpolationof its staggered“c” grid
velocities to thepressurelocations.

Scheme

Time
Step
(min)

Grid Size

12 x 12 24 x 24 48 x 48

Base 90 1.0 x 10’ 2.9 x 10—2 7.7 x i0~
lA 90 1.0 x 10I 3.9 x 10—2 1.3 x 10—2
2A 90 7.1 >< 10—2 2.5 x 10—2 7.2 >< î0~
lB 180 1.7 x i0~ 1.1 x i0’~ 6.6x 10—6

90 4.1 x i0
3 2.7 x 10~ 1.7 x l0~

45 1.2 x 10—2 9.6 x l0~’~ 6.5 x l0~
2B 180 5.9 x l0’~ 3.8 x î0~ 2.4 x 10—6

90 1.3 x î0~ 8.6 x i0~ 5.6 x 10—6
45 3.1 x i0~ 2.1 x i0’~ 1.4 x i05

tively, the peaknus velocities were 10.5, 15.2 and 18.3 cm s’ for the original
schemelA. For the improved schemelB, they were 15.0, 19.2and20.9 cm s~.
Thus, the changein schemelB from 20- to 10-km resolutionis much smallerthan
the changefrom 40 to 20 km. A reasonableestimateof theconvergedvaluewould
be about22 cm ~ ~ SchemelB is doserto this estimatedconvergedvalue with
20-km resolutionthan schemelA is with 10-km resolution.

3 Comparison of the new sehemesand the standard “c” grid scheme
DRIVL noted that the interpolations used by the new “c” grid Coriolis schemelA
lead to truncation errors O((Ax)2/At). 0f course, Ax and At are generallylinearly
relatedowing to numericalstability andefficiencyconsiderations;the resultis only
first-orderconvergenceas the resolution is increased.To show that this is not as
badas it might appear,andto comparethe new c gnd schemeswith thestandard
Arakawa“c” grid scheme,we considerthe following simplelinear problem,forced
by a specified bell-shapedpressurefield whoseamplitude varies with time (see
Fig. 1).

The pressurefield is designedsuchthat both pressureandits normal derivative
vanishon the rectangularboundaryof the problemdomain.The time dependence
is a short-tenu,earlyexponentialincrease,multiplied by a cosinefunction with a
periodof 10 days.This is the simplestproblemthat canaddressthenumericaldis-
persioneffectsof variousnumericaltreatmentsusing “c” grid Coriolis tenus.Such
dispersionis themain disadvantageof the “c” grid. Themathematicalstatementof
the problemcanbe given as follows:

au/et =fv — Ap/Ax

(1)

in the rectangulardomain (—LX <x <LX), (—LY <y <LY). The pressurep is
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normalizedby density,and is specifiedby

p(x,y,t) = A(t)P(x,y)

where

A(t) = l00[l — et/tl][l +AMPcos(2itt/t2)] dynes/cm-cm

P(x,y) = [(LX — x)(LY — y)(LX + x)(LY + y)/(LXLY)]

Theinitial conditionsareu = v = 0. Thepressuregradientis evaluatedanalytically
at eachgrid point at the start of eachtime step.

The analytic solution to the abovesystemhas u = v = O on the rectangular
boundarydefinedby the four lines x = LX, y = LY, x = —LX and y = —LY.
Theseconditionsare usednumericallyin alI “c” grid results.

Although an analytic solution tc> the coupledsystem(1) could be written, it is
notof interesthere.Ourpurposeis to comparethe errorsintroducedby the various
Arakawa“c” grid interpolationschemes.To do this,we comparethe c grid
approximatesolutions with the numerical time-differencedsolution of the system
(1) on acollocatedgrid, usingthesametime integration scheme,ratherthanwith the
analyticsolution.Thisnumerical time-differencedsolution is derivedusinganalytic
derivativesof the specified pressureat the discretegrid points, as the “c” grid
solutionsare.Thecollocatedgridsolutioncanbecalledthe “analytic solution of the
time-differencedsystem”,sinceno spatialaveragingis carriedout. The difference
betweenthe “c” grid solution and the analytic solution of the time-differenced
equationsis then due only to the errors introducedby the spatial interpolation
scheme(see Table 1 caption). The errors are thus not directly affected by the
time-differenceschemeused.

Conventional“c” grid staggeringis usedin aIl “c” grid results. (The outenuost
pressurepointsare one-haîfgrid intervalinsidetheboundary.Theoutenuostnormal
velocity points are on the boundaryand the nearesttangentialcomponentsareone-
haîfgrid interval inside.)

Table 1 showsresultsfor 30-dayintegrations:in aIl runsf= 8.342x l0~ ~
t1 = 1 day, t2 = 10 days,AMP = 1, andLX = LY = 1000km.This givesa peak
geostrophicvelocity of about2.87cm s

1 afterthe early transient.
All Table 1 runs use the ~urwtime integrationscheme(RoacheandDietrich,

1988), with FLT = 0.2. This schemeis a time-filtered leap-frog scheme.At the
endof eachtime step,thereare threeknown time levels of data.The initial value
for the next time step is calculatedfrom the threevalues.If p~,P2 andp~ are the
successivevalues,the initial value,p, for the next timestep is calculatedas follows:

p = (1 —FLT)p
2+FLT(p1+p3)/2

where0~FLT’v~1.
Here,p for thenext timestepcorrespondstop1 for the presentstep.Thisreduces

to the leap-frogschemewhenFLT = 0. WhenFLT > 0, selective(high-frequency)
timedampingresults.Ln thepresentcase,this dampsinertial oscillations,buthardly
affects the responseto the 10-day time-scaleshown in Fig. 1. This dampingis
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analogousto intemal waveeffects associatedwith tenusnot includedin the model
problem.

Table i comparestime-averagespatialnuserrors for the various schemeswith
spatial resolutionsof 12, 24 and48 grid intervals (in both directions)and with
time stepsof 45, 90 and 180 min. These“errors” are actually deviationsof the
“c” grid velocities, interpolatedto the cell centres,from the “exact” velocities
calculatedon a collocatedgrid. The latter are truly exact solutions to the time-
differencedequations,sinceno spatial interpolationsare involved. Since the same
time integrationschemes,and time stepsizes,are used in the comparisonwith the
“c” grid results, it follows that theexactresultsdiffer fromthe “c” grid resultsonly
becauseof spatialtruncationerrorsassociatedwith “c” grid interpolations.The nus
errors are thusa direct measureof the accuracyof the various “c” grid schemes.
Again, we note that the errors are not directly affected by the time integration
schemes;they are only due to spatial interpolations.

The standardbaseschemein Table 1 is the Arakawa “c” grid schemethat is
popularamong“c” grid modellers,in which the v velocity componentsare inter-
polatedto the u points in evaluatingthe Coriolis tenu andvice versa.The new
schemes(lA, lB, 2A and2B) are describedin Section2 andby DRM.

Table 1 comparesthe new higher-orderCoriolis schemeswith their lower-order
counterpartsand with the standard“c” grid schemefor typical space and time
resolutions.Theresultsshowthat thehigher-orderschemesaremuchmoreaccurate.
Thisgreatlyimprovedaccuracywith relativelylow overhead(only a few operations
pergrid pointpertime step)showsthat thenewhigher-orderschemesaresubstantial
improvements.Similar accuracyimprovementcould be obtainedby usinghigher-
order treatmentof the basescheme.

Table 1 also showsthat, for a fixed resolution,theerrors actually increasewith
decreasingtime step. This is due to the extra interpolations,as notedby DRM.
However, sincetime-stepdecreaseis generally associatedwith spatial resolution
increase,the relevantconvergencerate comparisonis found by going diagonally
downwardtowardthe right in Table 1, or by comparingresults for equalspatial
resolutionandtime step.In eithercase,thehigher-orderschemesare clearly more
accurate,whereasthelower-orderschemesarecompetitivewith oneanother.

Although schemes2A and2B appearbetterthan schemeslA and lB, we have
found that the latter schemesallow longertimesteps.SchemelB might bethebest
overaîl scheme,becauselongertime stepsalso meanfewerdispersiveinterpolations.

Figure 2 showssolutionanderrorplots as a functionof time andposition along

Fig. 2 Mid-Iatitude (y = O) x—t flow speed(a, b) and speeden-or (velocity en-or magnitude;c, d).
(a) Exact solution for FLT 0.2; maximum is 4.73 cm s~. At 60 days, the maximum is
2.8687 cm s’. (b) Exact solutionfor FLT = 1.0; maximumis 3.99 cms~. At 60 days,the
maximumis 2.8696cms<. (c) SchemelB en-orfor FLT = 0.2; maximumis 0.0022cms~~.

The time-averagedrmsen-oris 0.00069cmç
1. (d) SchemelB en-orfor FLT = 1.0; maximum

is 0.00063 cm s The time-averagedmis en-oris 0.00020 cm s<. The contours(a) and (b)
are uniformly spacedwith interval 0.5 cm s—t so thatcontourlevel 5 is 2.5 cm 5~t. Plots (c)
and(d) aredifferencesbetweenthe(a) and(b) exactsolutionsandthosederivedusingscheme
lB for theCoriolis ternis on a staggeredAralcawa “c” grid. The en-or contoursare uniformlY
spacedbetweenO and themaximaspecifiedabove.
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the line y = O in the problem formulation (1). This line is similar to otherlines
becauseof the symmetriesandlinearity of theproblem.The resolutionis 24 x 24
andthe time step is 90 min. Theruns are 60 days.All otherparametersare as in
theTable 1 runs,except tt = 0.1 day,which triggers a strongerinertial oscillation.

Plots 2aandb showthe exactsolutionto the time-differencedequationsfor FLT
— 0.2 (as in theTable 1 runs)and FLT = 1. Theseshowearly inertial oscillations,
whosedecayleadsto the periodicquasi-geostrophicsolutionforcedby the specified
time-varyingpressuregradient.Using FLT = 1.0 leadsto morerapid decayof the
high-frequencyintertial oscillations, but has littie effect on the long-tenuquasi-
geostrophicflow. The differencebetweenthe two solutionsat 60 days is less than
0.001 cm s1; during the first few inertial periods,it is as large as 0.7 cm s~.
This showsthat FLT = 1 quickly dampsthe inertial oscillation, while having an
extremelysmall effect on the responseto the 10-daypressureoscillation.

Plots 2c andd show the differencebetweenthe schemelB numericalsolution
andtheseexactsolutions,using thesameFLT values.Thetime-averagednuserrors,
correspondingto thosein Table 1, for FLT = 0.2 andFLT = 1 are 6.9 x and 2.0
x î04 cm s~, respectively.Therespectivemaximumerrorvaluesof 2.18 >< î03
and6.3 x l0~ cm s~ occurduring the early transient.The earlyhigh-frequency
error oscillations reflect errors in representingthe rapidly varying transientfree
inertial oscillation.The much smallerlow-frequencyerroroscillationsreflect much
smallererrors in the responseto the moreslowly varying 10-daypressureforcing
oscillation.

Thus,Fig. 2 showsthat while the inertial oscillationsdecaydue to thetime filter
(which is similar in effect to intemal gravity wave effects that are flot included
in this problem), thesolution approachesa quasi-geostrophicbalancewith a much
smallererror.Thisclearly showsthatthe new schemesaremoreaccuratefor quasi-
geostrophicgeophysicalmodesthan for transientinertial oscillations.Thelatterare
relatively unimportantin generalcirculationcalculationsasnoted in Section2. As
also noted in Section 2, such quasi-geostrophicmodeswould not be includedin
initial valueproblemsthat addressonly the Coriolis tenus.Thus,analysesof such
problemshave little relevanceto the applicationof thesenew schemesto quasi-
geostrophicflows.

4 Concluding remarks
The Table 1 results clearly demonstratethat the higher-orderCoriolis tenu treat-
mentson an Arakawa “c” staggeredgrid greatly improve accuracyfor low Rossby
numberflows. Similar improvementswould result from treatingother largelinear
ternis with higherorder for both the “c” and “b” grids. This could approachthe
accuracyof spectralmethodswithout the associatedcomputationalcost and limita-
tions.The potentialpayoff is much largerthan couldbe achievedby more accurate
treatmentof the momentumadvectiontenus.Thepresentimprovementscomewith
relativelylittle computationalcost,becauseof the simplicity of the Coriolis tenus.

Carrying this philosophya bit further,onemight alsoconsidera more accurate
treatmentof thevertical density advectiontenu,becauseof its direct effecton the
importantRossby radiusof defonuation,as Dietrich andLin havedone (1993).
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Although horizontal advectionis also important, the vertical advectiontenu is
generally associatedwith faster intemal wave time-scalesand thusmight justify
morecareful treatment.

The O((Ax)2/At) truncationerrors notedby DRM affect mainly the relatively
small non-geostrophic(moregenerally,out-of-balance)partof the flow. However,
errorsstill remainin the steadyandslowly varying quasi-geostrophicflow compo-
nentsowing to the Coriolis tenu interpolations,but all errorsare greatlyreduced
by usinghigher-orderinterpolations,as clearly demonstratedby TableI.
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Appendix 1: The new “c” grid Coriolis schemes
Here, we describethe new schemeslA and lB in detail as in DRM. For additional
discussion,and a detailed description of schemes2A and 2B, seeDRM.

We describe these schemeswith reference to simplified equations. Since the
distinguishing featuresof the methodsconcernonly the time derivative tenus,
the Conolis tenusand the verticaldiffusion tenus of themomentumequations,the
remainingtenusarelumped into U andV, andthe simplified momentumequations
are

~9u

= U +f v + uz
= ~ + ~ (A-1)

whereuz andvz are the verticaldiffusion tenusandf is the Coriolis parameter
in the Coriolis accelerationtenus,which varies only with latitude. In the model
problemof the main text, U andV containonly the pressuregradient,anduz and
vz are zero.

a Schetn’elA
This is theSOMS algorithmdescribedby Dietrich et al. (1987).The procedureis
as follows:

1) Calculate the U(i,j, k) andV(i,j, k) tenusin the following schematicrepre-
sentationof the staggered“c” grid control volume equations:

u(i+ t/
2,j,k,n+ 1) = u(i+ ‘/2,j,k,n)+~~[U(i+ ‘/2,j,k)+fv +uz]

(A-2)
v(i,j + ‘/2, k,n + 1) = v(i,j + ‘/2, k,n) + At[ V(i,j + 1/2, k) ft~ + VZII

The U andV tenusare integratedexplicitly (in time).
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2) Lnterpolatethe explicit tenusU and V, andtheold timelevel u and v velocity
componentsto thep locations,usingsimpletwo-point centredaverages:

U(i,j, k) = [U(i + ‘/2,j, k) + U(i — ‘/2,j, k)]/2

V(i,j, k) = [V(i,j + 1/2, k) + V(i,j — ‘/2, k)]/2 (A-3)

u(i,j, k, n) = [u(i + ‘/2,j, k,n) + u(i — ‘/2,j, k,n)]/2

v(i,j, k,n) [v(i,j + ‘/2, k,n) + v(i,j — ‘/2, k,n)]/2

3) Integrate the full equations,including the implicitly coupledCoriolis and
vertical diffusion tenusat thep locations:

u(i,j,k,n+ 1) = u(i,j,k,n)

+ At[U(i,j, k)+fv(i,j, k, n + 1)+ uz(i,j;k, n + 1)]
(A-4)

v(i,j,k,n+ 1) = v(i,j,k,n)

+ At[ V(i,j, k) —ffi(i,j, k,n + 1) + vz(i,j,k, n + 1)]

4) Interpolatetheresultsfrom step(3) backto the staggeredu andv locations:

u(i + ‘/2,j,k,n + 1) = [u(i,j,k,n + 1) + u(î+ l,j,k,n + 1)1/2

v(i,j + ‘/2, k,n + 1) = [v(i,j, k,n + 1)+ v(i,j + 1,k, n + 1)1/2

5) Clearout the divergenceof the barotropicmode(vertically averagedhorizon-
tal flow) by solving a two-dimensionalPoissonequationfor the surfacepressure
correction “dp” (see Dietrich et al., 1987); correctingthe pressuregradient in the
U and V tenusin (A-1); andadding the effectsof the correctedpressuregradient
(the correctionis independentof depth)everywhereto the new u andv velocity
components:

u(i + ‘/2,j, k,n + 1) = u(i + ‘/2,j, k,n + 1) + At[dp(i + 1,j) — dp(i,j)] (A6)

v(i,j + ‘/2, k,n + 1) = v(i,j + ‘/2, k,n + 1) + AtLdp(i,j + 1) — dp(i,j)]

This adjustmentis performedexplicitly, withoutimplicit couplingto Coriolis tenus.
6) Calculatethe vertical velocity by integratingthe incompressibilityequation.
7) Apply the “filtered leapfrog” updatingschemedescribedin Section3 to start

thenext time step.

b SchemelB
SchemelB is like schemelA exceptthe interpolationsbetween the p locations
and the “c” grid staggeredu andv locationsare performedwith higheraccuracy.
In particular,insteadof interpolatingthe two nearestlocationsto thecentral point,
a cubic is fit throughfour nearbylocations,andthe resultis evaluatedat the central
location.Forexample,let four successiveu valuesalonga latitudebe u(i), i 1,4.
Then, the original, lower-orderinterpolation schemeusedin schemelA is given
by

u(i + ‘/2) = [u(i) + u(i + 1)1/2
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andthe newhigher-orderinterpolationusedin schemelB is

u(i + ‘/2) = {9[u(i) + u(i + 1)] — [u(i — 1)+ u(i + 2)]}/16
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