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Abstract 

We describe a simple, flux conserving robust advection scheme that reduces numerical 
dispersion in application to passive scalar advection. Our hydrostatic semi-collocated (modified 
Arakawa 'a' grid) ocean model performance is enhanced by this modification in combination with 
a modified strategy for incompressibility. The modified advection scheme also reduces overshoot- 
ing errors resulting from numerical dispersion in the evolution of a sloshing front using a 
non-hydrostatic model. 

In Gulf of Mexico simulations, many of the realistic detailed features from our original model 
using 1/12 ° (about 9 km) resolution occur using the modified numerics with 20-km resolution. 
These are not seen with the original numerics and 20-km resolution. These detailed features 
include: strong fronts and frontal eddies; many cyclonic eddies, which spin off major warm core 
Loop Current eddies; and sharp eastward deflection of the Loop Current directly into the Florida 
Strait after major warm core eddy shedding. © 1997 Elsevier Science B.V. 

I. Introduction 

The modified Arakawa 'a '  grid DieCAST (Dietrich/Center for Air Sea Technology) 
(Dietrich et al., 1993, Dietrich and Ko, 1994) ocean model was derived from the 
modified Arakawa 'c '  grid SOMS (Sandia ocean modeling system: Dietrich et al., 1987, 
Dietrich, 1992) ocean model. Both models are three-dimensional in a rotating frame, and 
use the hydrostatic, Boussinesq, and rigid-lid approximations. They use flux conserving 
centered approximations based on control volumes (Roache, 1976) and a weakly 
time-filtered leapfrog time integration scheme (Roache and Dietrich, 1988). 

A significant feature is that both models use cubic interpolations to communicate data 
between collocated 'a '  and staggered 'c '  grid locations. Such mixed grid approaches 
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mitigate weak points of the respective grids (Coriolis terms on the 'c' grid; internal 
wave propagation terms on the 'a' grid). Higher order interpolations greatly improve 
grid convergence in prototype ocean problems (Dietrich et al., 1990, Dietrich, 1993). 

Modified numerical schemes discussed in Section 2 further improve interpolations 
used by our models. The modified schemes are compared with our original ones in 
Section 3, with three applications: Section 3. l applies to the classic cyclic passive scalar 
advection problem; Section 3.2 applies to a non-hydrostatic, Boussinesq, two-dimen- 
sional front; and Section 3.3 applies to a three-dimensional, hydrostatic Gulf of Mexico 
general circulation simulation. 

2. Modified numerical schemes 

2.1. Reduced dispersion advection scheme 

Our first modification involves the interpolations used in advection. This scheme 
greatly reduces numerical dispersion, so we call it our reduced dispersion advection, or 
'RDA', scheme. Our Arakawa 'a' grid model uses a 'c' grid non-divergent advection 
velocity. This desirable 'c' grid feature avoids null space problems in determining the 
pressure adjustment needed to get a non-divergent velocity. Our control volume 'a' grid 
advection scheme thus requires evaluation of the fluxed quantities at the staggered 'c' 
grid locations. The conventional advection scheme, used by our early ocean models, 
uses two-point averages, taking values from the scalar cell centers on each side of the 
cell faces, 1 /2  grid interval away: 

f ( i )  = (f/-  J/2 + f /+ , /2 ) /2  (1) 

which is exact for linear variations. 
Instead of two-point averages, our RDA scheme includes additional information from 

the next nearest points, 3 / 2  grid intervals away: 

fi = [9(~-  1/2 +~+ I /2 ) - -~-3 /2- -~+ 3/2]/16 (2) 

which is exact for general cubic variations. 
The resulting interpolated field is then multiplied by the non-divergent advection 

velocity to get the flux at the cell face. The fluxes are then substituted into the 'control 
volume' integrated conservation equations (Roache, 1976). While not leading to a 
formally higher order overall advection scheme, the new scheme is more accurate, 
conservative, and greatly reduces numerical dispersion. 

2.2. Modified incompressibility algorithm 

The second modification to our ocean model involves our numerical algorithm for 
construction of a non-divergent advection velocity, so we call it our modified incom- 
pressibility algorithm, or 'MIA' scheme. As with our original 'a' grid scheme (Dietrich 
et al., 1990), we determine the non-divergent advection velocity by: interpolating (using 
a cubic) the 'a' grid trial velocity (derived using a trial surface pressure, the hydrostatic 
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relation and the momentum equations) to the usual 'c' grid advection locations; then 
'clearing out the divergence' of the resulting 'c' grid barotropic mode (vertically 
averaged) velocity by appropriate surface pressure adjustment and application. This 
incompressibility information must be communicated back to the 'a' grid locations. 

Originally, we simply interpolated the 'c' grid advection velocity back to the 'a' grid 
locations, again using cubic fourth order as in the previous 'a' to 'c' grid interpolations. 
Although this combined forward/reverse interpolation is dispersive, the numerical 
dispersion effects are small when the time step is not small compared with the linear 
stability limit (Dietrich, 1993). Extremely small time step may result in artificial 
dispersion dominating other transients. Such artificial dispersion is greatly reduced by 
our new MIA scheme, allowing one to take advantage of the greatly reduced numerical 
dispersion of our RDA scheme described above, and thus achieve low overall numerical 
dispersion. 

Our new MIA scheme uses a modified reverse interpolation approach. Instead of 
interpolating the 'c' grid velocity to the 'a' grid, we interpolate the changes of 'c' grid 
velocity that result from 'clearing out its divergence'. In other words, the interpolated 
changes are added to the original 'a' grid trial velocity referred to above. This procedure 
avoids any reverse interpolation effects if the changes are zero. (It seems possible to 
develop an expanded stencil 'a' grid pressure gradient operator corresponding to an 
expanded stencil Poisson operator which gives an 'a' grid velocity adjustment that when 
interpolated to the 'c' grid yields a non-divergent 'c' grid advection velocity. This 
procedure would avoid dispersive reverse interpolations, but would be more computa- 
tionally intensive in the Poisson solver step.) 

Combining this MIA scheme with our RDA (Section 2.1) scheme, the overall 
numerical dispersion is greatly reduced. The changes of velocity needed to maintain 
incompressibility are small compared with velocity differences at adjacent grid loca- 
tions, because a good guess for the 'trial' top level pressure field is available each time 
step from previous results, thus producing a quasi-non-divergent velocity that requires 
only small adjustment to 'clear out its divergence'. 

The MIA scheme is analogous to Scheme 2B (Dietrich et al., 1990) for the Coriolis 
terms in our original 'c' grid model, but is more effective because it greatly reduces 
numerical dispersion. We do not envision a correspondingly low dispersion 'c' grid 
scheme, because the interpolations needed for the Coriolis terms lead to significant 
dispersion even with Scheme 2B. 

3. Comparison of modified and original schemes in three test problems 

3.1. Classic cyclic passive scalar advection problem 

Two-dimensional advection of a specified scalar feature in a cylindrical geometry 
with uniform angular velocity is widely used as a test case to show the properties of 
various advection schemes. Spectral methods are exact for such a linear advection 
problem and have good advection properties in general, while being expensive and 
limited in application. 
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The convent ional  centered control volume-based finite difference advect ion scheme 
used by our early ocean models,  while having good total conservat ion properties, leads 
to substantial unphysical  dispersion resulting from truncation errors. Nevertheless,  

realistic fronts and frontal eddies occur even in our  original ocean models,  because of 

their robustness with low explicit  diffusion. The low explicit  diffusion (large cell-Re- 
ynolds number)  is robust, because the advection velocity tends to be nearly parallel to 

the iso-surfaces of the various fields, thus reducing the effective cel l -Reynolds  number  
compared with the usual scaling. 

Here, we show that our modif ied advection scheme greatly reduces this numerical  

dispersion. 

( a )  4 . 0  cloys rain: 4 . 9  mox: 3 3 . 8  
1 . . . . . . . . . . . . . . . . . . . . . . . . . .  I I  a f a a  i t a a a  i 1  
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Fig. 1. Passive scalar advection test. The 'order" of the scheme refers only to the interpolations of the advected 
quantities from the cell centers to the cell laces, where they are multiplied by the specified constant angular 
velocity field (rigid body rotation) to get the control volume fluxes. Results are shown at time = 4, 8. 12, and 
16 days. One full revolution around the mid-point for the specified constant angular velocity advection field 
occurs in 16 days. 
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Fig. 1 (continued). 

Our passive scalar is assumed to have a shape of a cone with radius four points. The 
grid is 40 by 40 points. The initial peak (vertex) is given a value of 50. Rigid body 
rotation (constant angular velocity) is specified for the flow. The initial location of the 

Table 1 
Percent cone height undershoot error: cyclic passive scalar advection problem. Most-negative height as 
percentage of initial height after one revolution of cone feature. Cone radius is four grid intervals. 
Cell-Reynolds number is based on velocity at center of cone in constant angular velocity advection field 

Cell RE a Order of interpolation of cone height 

2nd order 4th order 

45 10.6 0.6 
90 15.6 4.0 

aReynolds number. 



(a
) 

\\~
:~

x 
\ 

\\
\\

\\
\ 

\ 

\ 
~

\\
\ 

\ 
\ 

kV
~

 

\\
 

,. 
\\

', 

"
'

 ,, 
"\ 

\ ',, '\
 , 

o 

' 
..

..
. l

 
• 

k
tL

Il
.!

~
 

(b
) 

~~
~,

 

-.-
...

---
-..

\- 

.'x
o 

...
...

...
...

...
...

. .'.
~.

...
...

.'t
.'i

l ..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. 

Fi
g.

 2
. 

S
lo

sh
in

g 
fr

on
t 

pr
ob

le
m

 w
it

h 
hi

gh
 (

25
-m

) 
re

so
lu

ti
on

. 
G

ri
d 

si
ze

 i
s 

4
0

0
x

 1
00

. 
T

he
 m

ax
im

um
 c

el
l-

R
ey

no
ld

s 
nu

m
be

r 
is

 a
bo

ut
 2

0.
 

B
ot

h 
R

D
A

 a
nd

 M
IA

 a
re

 
in

cl
ud

ed
. 

T
he

 e
vo

lu
ti

on
 f

ro
m

 a
n 

in
it

ia
ll

y 
ve

rt
ic

al
 f

ro
nt

 (
at

 t
im

e 
= 

0)
 i

s 
sh

ow
n 

at
 t

im
es

 
1,

 2
, 

4,
 8

, 
an

d 
12

 h
. 

T
he

 o
ve

rs
ho

ot
 e

rr
or

s 
(b

ey
on

d 
th

e 
in

it
ia

l 
ex

tr
em

a 
of

 
-0

.0
5

0
0

 a
nd

 0
.0

50
(~

 °)
 a

t 
th

e 
re

sp
ec

ti
ve

 t
im

es
 a

re
: 

0.
00

00
, 

0.
00

02
, 

0.
00

10
, 

0.
00

02
, 

an
d 

0.
00

03
 °.

 

-q
 

t "-
4 



D.E. Dietrich / Dynamics of Atmospheres and Oceans 27 (1997) 201-217 207 

l/// 
tii 

li ~j/ / I/, 
• ! i /  
!]// 
ii!l 
IIII 

IIl!J 
iJ// 

li/// 

'/// 
/ /  

l~ 

v 

i 

"(3 

,e9  

e .  

e -  

t -4  

.,r 



208 D.E. Dietrich / Dynamics gf Atmospheres and Oceans 27 (1997) 201 217 

v J 

-fi 

~ q  



D.E. Dietrich/Dynamics of Atmospheres and Oceans 27 (1997) 201-217 209 

vertex is midway between center of the cylindrical geometry and the sidewall. The time 
step Courant number is 0.32 at the cone center, 0.8 at the comers of the grid. Runs with 
high and low passive scalar diffusivities are used, such that the cell-Reynolds number is 
approximately 45 and 90, respectively, at the cone center. Runs with our modified (four 
point interpolations) and original (two point interpolations) schemes are performed. The 
explicit diffusion quickly eliminates the discontinuities at the cone vertex and cone base. 
Negative values are a result of purely numerical dispersion errors. The results (Fig. 1 
and Table 1) demonstrate that RDA is much less dispersive than our original scheme. 

3.2. Non-hydrostatic Boussinesq 2-D sloshing front 

In real applications, numerical models must deal with a dynamically evolving 
advection velocity. As noted in Section 2, determining such advection velocity on the 
Arakawa 'a '  grid used by the DieCAST model requires interpolations that are numeri- 
cally dispersive. However, our modified scheme is much less dispersive, as we now 
show through a second test problem. 

Our second test problem involves incompressible non-hydrostatic Boussinesq flow in 
a two-dimensional closed rectangular cavity. Its scale is 8 km wide by 2 km deep. 
Model resolutions of 25, 50, and 100 m are used. Rigid free-slip boundaries are 
assumed. The initial conditions are: zero flow, with a vertical front midway between the 
sidewalls. Viscosity and thermal diffusivity are 100 m 2 s -~ in all cases. An initial 
temperature contrast of 0. I°C is specified across the front, and is related to density by a 
Boussinesq approximation appropriate for water. The resulting flow velocity maximum 
is about 1 m s - l ,  giving a maximum cell-Reynolds number about 20 with the highest 
resolution. 

Fig. 2 shows temperature evolution from its initially vertical front position (not 
shown) in results using the high resolution (25 m) with both modified schemes, RDA 
and MIA, described in Section 2. Front positions are shown at times 1, 2, 4, 8 and 12 h 
after its vertical initial position with cold dense water on the left. The front rotates 
counterclockwise until the cold fluid and warm fluid are approximately interchanged. 
Sharp fronts occur along the top and bottom boundaries when the front is substantially 
away from vertical orientation. 

Table 2 
Maximum percent temperature overshoot error: sloshing front problem. Non-hydrostatic sloshing front 
problem with three resolutions. The maximum cell-Reyolds number is about 20 with the highest (25-m) 
resolution. The 'RDA' scheme improves passive scalar advection; 'MIA' reduces numerical dispersion 
resulting from interpolations between staggered 'c' grid and collocated 'a' grid used in applying incompress- 
ibility condition 

Resolution (m) New schemes included 

Neither RDA MIA RDA and MIA 

25 0 2 0 2 
50 31.6 4 34.2 3.8 

100 65.6 33.2 97.6 37.8 
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A measure of  the non-linear dispersion error is the maximum temperature above the 
original, which occurs when the front reaches corners for the first time (about 4 h into 
the run). The dispersion is not apparent in the plots of  Fig. 2. However, at 4 h, the 
temperature range reaches a maximum value of  -0 .051  to 0.051 K, which is 2% 
overshoot beyond the initial range of  - 0 . 0 5 0  to 0.050, indicating some numerical 
dispersion. 

Table 2 shows these maximum overshoots at all three resolutions for cases with 
different combinations of  RDA and M1A. It shows that RDA has a strong positive 
effect, while MIA seems to have a weakly negative effect. This negative effect can be 
explained as follows. Advection overshoots increase as feature size decreases. The 
reduced dispersion associated with the improved interpolations tightens the front, 
increasing advection overshoot errors, although the fact that the front is tight can mean 
more accurate solution in spite of the overshoots. 

3.3. Hydrostatic 3-D Gulf ()f Mexico circulation 

Although our Gulf of Mexico model is three-dimensional, the RDA scheme is applied 
only to horizontal advection. Vertical advection is not involved in the important 
barotropic (vertically averaged) flow component. However, vertical density advection is 
a primary term in internal wave propagation. As noted by Dietrich (1993), this suggests 
that specially accurate treatments of  vertical density advection, such as RDA, might be 
quite useful, especially for baroclinic flow components whose scales are determined by 
the Rossby radius of  deformation and thus by internal wave propagation. 

We inserted both MIA and horizontal RDA of Section 2 into our Arakawa 'a '  grid 
Gulf of Mexico model (Dietrich and Ko, 1994) with 20 km resolution. Full details on 
the physical problem are given by Dietrich and Lin (1994). We ran simulations with the 
modified and original schemes using identical open boundary and initial conditions, and 
identical model geometry and parameters. Initial conditions were from Day 1800 of  a 
run with the original schemes. 

Within a model time step, the original and MIA schemes both generate an intermedi- 
ate 'a '  grid velocity result, interpolate it to the 'c '  grid, and then use pressure adjustment 
to eliminate the divergence from the 'c" grid velocity. The original scheme then 
interpolates the non-divergent velocity back to the 'a" grid. In contrast, the MIA scheme 
interpolates the changes in velocity, made in eliminating its divergence, to the 'a '  grid 
and adds them to the original 'a '  grid velocity. Thus, these two schemes give slightly 
different 'a '  grid results. Here, each time step, we combine 3% of the solution resulting 
from the original scheme with 97% of the MIA result, which gives another slightly 
different 'a '  grid result. This procedure reduces noise although the model is stable with 
the pure MIA scheme. Increased small-scale noise can lead to increased mixing across 

Fig. 3. Gulf of Mexico results with and without RDA and MIA. The two 'identical twin' runs use same initial 
conditions (at Day 1800), boundary conditions, geometry, and model parameters. The only difference is the 
numerics. The larger maximum velocities with the new features reflect much tighter fronts, resulting in a 
well-developed frontal eddy. similar to observations, by Day 1835. 
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day 1815, Vmax=102.9 

day 1815, Vmax=143.2 
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day 1835, Vmax=120.1 

day 1835, Vmax=140.1 

Fig. 3 (continued). 
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fronts, like the effects of eddy viscosity. This increased mixing seems to be unphysically 
large due to truncation errors in small-scale eddies, because the fronts seem to be 
diffused and main Loop Current eddies eroded and dissipated more rapidly than 
typically observed. This excess mixing can be reduced by combining MIA with the more 
dispersive original scheme. 

Figs. 3 and 4, and Table 3, give results with various combinations of the RDA and 
MIA schemes. Fig. 3(a) and (c) and Fig. 4(a) and (b) show results with the original 
numerics (neither RDA nor MIA). Fig. 3(b) and (d) show results with both new features. 
Fig. 3 shows top layer pressure contours (interval = 5 cm equivalent hydrostatic pressure 
head, which closely matches sea surface height deviation from a level surface) with 
superposed velocity vectors. A rapid increase of velocity occurs during the first 15 days 
(Days 1800-1815) with the new features. This increase results from the rapid tightening 
of fronts caused by reduced numerical dispersion. Starting about Day 15, frontal eddies 
grow and mix water across the front, thereby limiting the tightening of the fronts. This 
mixing slows the increase of velocity and makes it more irregular as indicated in Table 3 
and Fig. 4. The frontal eddies are much weaker with the RDA scheme by itself (not 
shown), and the maximum velocity continues to increase at a slower rate (second 
column, Table 3) through Day 1860. 

The dominant frontal eddy on the north side of the larger separating Loop Current 
eddy in the MIA results (right panel, Day 1835) originated just north of the Yucatan 
Peninsula (right panel, Day 1815). It is associated with an occluded front pattern much 
like Fig. 5, which compares surface temperature distribution from satellite observations 
with those from a higher resolution (9 km) simulation using the original numerics. These 
kinds of patterns are common in observations and in our model results. The frontal eddy 
is just a weak frontal wave in the original scheme results (Fig. 3(a) and (c)). Thus, the 
MIA results appear more realistic and more like the higher resolution results. 

In the long run the MIA scheme leads to many more eddies throughout the Gulf of 
Mexico, and the Loop Current flattens when it sheds an eddy (Fig. 4). Satellite and 

Table 3 

Effect  o f  new schemes on Gu l f  o f  Mexico  results m a x i m u m  velocity (cm s -  L ) development  after  initializing 

with Day  1800 results f rom run with neither new feature.  The original  scheme (with neither  R D A  nor  MIA),  

f rom which  all four  runs are initialized at Day  1800, is a l ready in near  statistical equi l ibr ium by Day  1800, so 

we did not run it past  Day  2160 

Time N e w  schemes included 

Neither  R D A  M I A  R D A  and  MIA 

Day  1815 102.9 105.0 135.9 143.2 

Day  1830 114.0 117.3 157.2 139.9 

Day  1845 116.3 118.2 154.6 145.9 

Day  1860 112.1 123.2 131.5 158.3 
Day 1920 90.1 - 147.5 

Day  1980 96.1 - - 131.3 

Day  2160 122.5 - - 229.8 

Day  2520 - - - 223.9 

Day  2880 - - - 161.6 
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day 2160, Vmax=122.5 

day 2160, Vmax=229.8 
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Fig. 5. Top level (depth = 10 m) temperature from the DieCAST model and from observations (inset) in the 
Gulf of Mexico. The model snapshot is at Day 1220 of a 1/12 by 20 layer numerical simulation. The 
single-digit contour labels in the model output omit the 10s digit; thus for example the label '5' denotes a 
temperature of 25°C. The observations are sea-surface temperature derived from a satellite image dated April 
20, 1984 (Waddell and Brown, 1987). 

drifter observations indicate that there are typically more than a dozen significant eddies 
in the Gulf of Mexico at a given time (P. Niiler, 1993 personal communication). The 
Loop Current flattening is also like previous higher resolution simulations and observa- 
tions. The original scheme is already in near statistical equilibrium at Day 1800, so we 
do not include results beyond Day 2160 in Table 3. 

In Table 3, the RDA scheme has much less effect on the early rapid maximum 
velocity increase than MIA, in contrast to the results for the non-hydrostatic sloshing 
front (Section 3.2). This appears related to the rapid growth of the Loop Current frontal 
eddy between Days 1815 and 1835, which has much reduced amplitude with RDA alone 
(Fig. 3). Three possible reasons are: RDA was not included in vertical advection; in the 
absence of MIA, the fronts are less tight and better resolved, so the higher order 
interpolations of RDA have less effect; and in contrast with the sloshing front problem 
of Section 3.2, ocean flows tend to be nearly parallel to fronts, so large-scale features 
develop and propagate by vortex stretching and vorticity advection dynamics associated 
with Coriolis terms (Rossby waves), rather than by horizontal density advection. 

Fig. 4. Gulf of Mexico results at Day 2160. The decreased numerical dispersion with RDA and MIA leads to a 
more vigorous and widely dispersed eddy field, similar to observations and to higher resolution results (not 
shown) with the more standard approach (using neither RDA nor MIA). 
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4. Comments on the modified schemes 

The modified schemes decrease numerical dispersion, and lead to tighter fronts and 
more energetic small-scale frontal eddies. These can mix material across fronts, resulting 
in 'physical' (involving resolved velocity components rather than interpolations) disper- 
sion. Such physical dispersion can extend the mixing region for different water masses, 
leading to a more widely distributed eddy field. A good numerical experiment (not done 
here) might be to add a passive scalar to water within a major Gulf Stream or Loop 
Current warm core eddy and compare how it disperses with the modified and original 
schemes. Widely distributed eddy fields may be important, such as in the westward 
dispersion of Labrador Current cold bottom water along the Grand and Georges Banks, 
which influences the separation of the Gulf Stream at Cape Hatteras, as we see in recent 
application of our new numerics to the North Atlantic Basin (Dietrich and Mehra, 1996). 
For small-scale flow components, such as frontal eddies, such 'physical' dispersion can 
of course have significant truncation error effects, yet the very existence of the frontal 
eddies on tight fronts is an improvement in representing nature. 

Both modified schemes are robust in application to the propagation of warm core 
Loop Current eddies across the Gulf of Mexico. This propagation involves highly 
non-linear dynamics: a strong front is maintained at the outer edge of the warm core 
eddy as it spins at about one rotation per 15 days while propagating across the Gulf of 
Mexico over a period of about 6 months. Frontal eddies slowly disperse the warm core 
water as it spins westward. In the new model results with 20-kin resolution, the warm 
core eddies deform more and lose their identity more rapidly because of this dispersion, 
but the dispersed energy appears in a much larger number of eddies, as observed. One 
can reduce this 'physical dispersion rate' by combining our modified reverse interpola- 
tion scheme with our original one. Indeed, as results in Section 3.3 indicate, combining 
only 3% of our original scheme with 97% of the new scheme leads to more realistic 
overall behavior than the original scheme with 20-km resolution, especially for small- 
scale flow components. 

Although RDA is first-moment conservative, the conservation properties of RDA and 
MIA are not the focus here. We have seen no indication of non-linear instability, as 
occurs with some non-quadratic-conserving schemes. Accuracy (which, among other 
things, means low numerical dispersion) is our primary concern. 

5, Concluding remarks 

We have discussed two modifications of the schemes used by our original ocean 
model and explored their effects on greatly different computational fluid dynamics 
problems. In contrast with the non-hydrostatic sloshing front problem of Section 3.2, the 
main improvement in the Gulf of Mexico general circulation problem of Section 3.3 
appears to be MIA scheme rather than RDA. This probably relates to the fact that, in 
ocean general circulations, the velocity tends to be nearly parallel to the iso-surfaces of 
the advected fields, in contrast to the sloshing front problem. Further, when the internal 
wave terms are treated explicitly (in time) as usually done, the Courant number is 
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generally quite small. The result is that advection effects are small even for a rather 

large number of time steps, during which many dispersive interpolations are used in 

satisfying incompressibility. However, the northern oceans have characteristics perhaps 
more like those of the sloshing front problem, so both MIA and RDA are of interest in 
ocean modeling as well as in other computational fluid dynamic applications. Although 

the present model produces acceptable general circulation patterns in the Gulf of Mexico 
and is thus a good test for the new methods, it is not applicable to fast modes such as 
tides because of its rigid-lid approximation. The new methods are, however, applicable 

to free surface models as well as general circulation models. Much needs to be done to 
understand the behavior of these schemes in detail, but our present results show that they 

have interesting effects and are quite promising. 
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