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Mixing and available potential energy in stratified flows
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Mixing plays an important role in atmospheric and oceanic flows. It occurs on the small scales, is
due to molecular diffusion, and is irreversible. On the other hand, stirring is a kinematic process that
enhances mixing but is reversible. Budgets of the available potential energy, which require that the
reference potential energy be computed, are used to study these processes. We develop an approach
for calculating the available potential energy from the probability density function that is more
efficient than existing methods, especially in two and three dimensions. It is suitable for application
to both numerical simulations and experiments. A new length scale is defined which quantifies
stirring and provides a measure of the strength of overturns resulting from stirring as well as their
size. Simulations of lid-driven cavity flow and stratified homogeneous turbulent shear flow provide
illustrations of the method. The new length scale is similar to Thorpe scale in lid-driven cavity flow
and closely related to the Ellison scale in homogeneous sheared turbulen@)0I©American
Institute of Physics.[DOI: 10.1063/1.1358307

I. INTRODUCTION However, overturning length scales greater thancan oc-
cur when internal waves are preséfitWaves contribute to
Mixing is an important process in density stratified geo-the overturning scale but not the Ozmidov scalthe ver-
physical flows. Energy is extracted from the mean flowtica) velocity fluctuations due to internal waves are small
through shear production of turbulence while buoyancy stagompared to those of turbulence, the buoyancy staje
bilizes the flow by converting vertical turbulent kinetic en- — \2)2/N can be used instead of the Ozmidov scale.
ergy into available ~potential energy(APE) through Ellison (1957* proposed an overturning length scale
stirring.”~> Which mixing mech_amsms are active de_pends OMYefined byLe= — pyme/ (9pl 3Z) Wherep, . is the root mean
the nature of the external forcing and the stratification. In thesquare(rms) density fluctuationL ¢ is a typical vertical dis-

open ocean, many mechamsms havg been identified. qunce travelled by a fluid particle before beginning to return
surface shear stress induced by the wind produces a hom% its equilibrium level or mixing

geneous well-mixed layer whose lower boundary is trans- Another commonly used scale is the Thorpe sdale 2

ported downward by entramment.. This s]tugt|on can be "%t is obtained by reordering the density profile into a stable
p.roduced n t'he Iaboratpry using .°§§'”a“”9 gndg andmonotonic profile. Thorpe’s method is useful when the
;lmulates by dlregt_nur;]werlcal S|rlr)1ulat|6fn. Turb(LjJI_ent m')i' sampled data is on a single vertical line or when the flow is
Ing can be created In the ocean by surface and interna W_a‘f?orizontally homogeneous. Let the vertical density profile

breaking and by tidal forcipg. qu objective in thi_s _study 'S haveN layers, thejth of which has density; and depth; .
to develop an approach to investigate turbulent mixing quall-hc this layer must be moved to depf, to generate a stable

tatively based on the length scales and energy budgets. profile then its Thorpe displacementds=(Z;—Z,). Typi-

cally, these displacements are computed using a bubble sort.

For large data sets, quicksort can be used instead. On average
The strength of mixing in the ocean is partially deter-it is the fastest known sorting algorithm. An illustration of

mined by the length scales of the turbulent eddi€S. The  the sorting process is given in Fig. 1. The Thorpe stalés

behavior of a stratified turbulent flow depends on a balancelefined as the rms of the displacements

of three types of forces: inertial, buoyant, and viscous. Buoy- B N

ancy forces act on the largest scales of vertical motion and Lr=(d{)™ @

tend to suppress them. Viscous forces act on the smalle\s;_tT is proportional to the mean eddy size provided that the

scales and determine their size. _horizontal density gradient is much smaller than the vertical
One important scale in the presence of buoyancy is th%radient. Thus it is an overturning scale.

Ozmidov Sca|el_o=(g/'N3)l/2 wheree is the kinetic energy Thorpe displacements are useful in estimating vertical
dissipation rate andN is the Brunt-Visda frequency N 1ixing 13 Strongly mixing flows are characterized by large
=\ —(9/p)dpldz). Lo is the largest scale that can overturn displacements that are negative at the top of the domain and
so scales larger thah, are dominated by buoyancy. positive at the bottom. The sorted state is a reference state of
minimum potential energyFig. 1). A strong correlation be-

aAuthor to whom correspondence should be addressed. Electronic maifVe€€eN _LT an_d Le i.S found in Iaborgtory _experiments and
yhtseng@stanford.edu numerical simulations except at high Richardson number

A. Length scales in stratified flows
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(Ri).2"*Weak internal waves do not affect but do affect  the ratio of the mixing time to the decay time of the turbu-
Lg. Previous work indicates thdtt and Lo are linearly lence, little mixing occurs whe>1 as a stirred fluid parcel
related when the flow is dominated by buoyariéy:® returns to its original position before the density difference
Winters et al® gave a precise, three-dimensionaD), can diffuse away. Whery<1, a stirred parcel immediately
mathematical sorting method. However, the definition of theloses its identity by mixing with the surrounding fluid. His
Thorpe scale in three dimensions is ambiguous. Sincés  scaling analysis of the effects of the Richardson, Reynolds,
computed by reordering each individual vertical density pro-and Schmidt number agrees well with previous
file, most researchers defihg in 3D as the rms of the one- experiments:16:18
dimensional(1D) Thorpe displacementsOne can also de- Many other observations show that molecular diffusion
fine a three-dimensional version of Thorpe scdle.sp,  plays a non-negligible role in turbulent stratified flows:%°
which is computed using the locatiod, of the particle  However, there is disagreement bow the diffusivity af-
when hsonz_ontal as well as vertical displacements argects turbulent mixing. Ivey and Imberdesuggested that
allowed? It is the rms of the vertical component of these qecular diffusivity plays a significant role when<St and
displacementsZ(x,t) = Z, (x,t)) over the domainLy is &  he density fluctuations are rapidly dissipated. Some labora-
measure of vertical overturning only, whiley 3p is @ mea- 41y experiments and numerical simulations support this hy-
sure of scalar displacements in gen_éf‘ahterna_l waves may pothesis. According to Ivey and Imberdeexperimental re-
affect Lt 3p but notL; but, otherwise, the differences are sults show a peak flux Richardson numb@;, in air

usually s_mall. . (Sc=0.7) that is about 20% lower than that in saltwater
Inertial forces are ?E)alalr/14ced by viscous effects at the K0|'(Sc=700). Their measurements in heated wat&c=7)
mogorov scalel. = (v/e)™". agree with the saltwater result. Itsweire and Hell&r@B9?*
found that scales smaller thai. 3 do not contribute to the
vertical mass flux. Other results suggest that diffusivity con-
Mixing and stirring are distinct processes. Stirring is atributes to mixing greatly even when Sé. Holt et all
mechanical process that brings fluids of different densitiesound that the vertical mass flux decreases frons= 8do
into contact through the action of strain and vertical motion,Sc=4. Other researchers proposed a critical Peclet number
thus converting kinetic energy into potential energy. After(pe=ReS¢'® or a critical Richardson number Ri, which
the fluid has been stirred, it may mix or re-stratify throughcqylqd depend on Pe and & The entrainment rate is
gravitational settling. Mixing is the process of diffusion {hougnht to be dominated by the molecular diffusivity below a
across interfaces to produce fluid of intermediate density angyitical Pe or above a certain Ri. In addition to the Peclet
is an irreversible process. o _ number, Breidentha{1992% considered the effects of the
The concepts of mixing and stirring have been studiedschmigt, Richardson, and Reynolds numbers on entrainment

_18 S
by several group8:'® However, accurate d'St'nCt'Onjdbe' at stratified interfaces. The effect of molecular diffusivity is
tween therg In expglrlmﬁnts_ IS QOt easy. ,zr_ef and _‘Lln?js_fstill not completely clear. In this study, we will explore the
Investigated reversible chaotic advection and Irreversible dife, 0 diffusivity effect in lid-driven cavity flow and ho-

fusion via numerical experiments. Broadwell and Muﬁ@a! mogeneous sheared turbulence.
discussed scalar mixing in turbulent shear layers and jets
usi_ng experimgntal results. They considere.d Ia_rge—sca_le_ eRs potential energy budgets

trainment, stirring at the large scales, and diffusional mixing

at the small scales. Diffusion acts over a longer interface ina  Molecular diffusion causes irreversible diapycnal mix-

stirred and stretched blob than in an unstirred one. On thing, increasing the reference potential energy. The latter is
other hand, Rehmaffhapplied scaling analysis to estimate the potential energy of a state created by allowing the stirred
mixing and investigated Schmidt number effects on the mixfluid to settle reversibly to its lowest potential energy state; it
ing efficiency in towed-grid turbulence experimentsylis  was first introduced by Lorerz.The rate of increase of the

B. Mixing and stirring
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reference potential energy is a fraction<1 of the rate of e next relate APE to the pdf. Lgtbe the independent
tL_lrbuIent energy production and is called the mixing effi-density variable in probability sample spages[pm,pml,
ciency. wherep., andpy, are the minimum and maximum values of

_Available potential energyAPE) may contribute to oce- the density. The probability of density in the range be-
anic or atmospher_|c C|r(_:ulat|0n as it can be converted '”t9ween7) and73+d7) is P(T))d?). P(TJ) may be defined in
kinetic energy. It is defined as the difference between thsms of the volume integral of a delta function
actual potential energy and the potential energy of the refer-
ence state. The relation between available potential energy
and mixing has been investigated by many researctérg®
Winterset al® derived a dynamic evolution equation for the i . . :
APE of a Boussinesq fluid. Their analysis carefully distin-. Let us Qef|nezr(p) t(.) be the height of fluid of density
guishes the total potential energy and the reference potentizlﬂ_the minimum potential ehgrgy st_ate and d_aZr be tkle
energy and is useful for evaluating irreversible diapycnaffickness of the layer containing fluid of density betwgen
mixing rates in turbulence simulations. andp+dp. We use the notatiod, (p) in order to distinguish

The purpose of this study is to develop a method forthe pdf reference state from the spatial reference state,
evaluating the available potential energy through a probabilZ, (X). If we assume that all fluid layers have the same hori-
ity density function(pdf) approach and to quantify diabatic zontal surface are4, the volume occupied by this fluid is
mixing and stirring in terms of the available potential energy. B ~ o~
This leads to a natural relationship between the APE and a Adz],=VP(p)dpl,. ®)
length scale. The pdf approach is an efficient method foif the domain is not cylindrical, the horizontal cross section
evaluating the reference potential energy in both numericah is a function of the vertical coordinate. Note thatis a
simulations and experiments and can easily be extended ummy (independentvariable in probability space. The ref-
more complicated flows. The length scale defined beloverence state profilg,(p) can be obtained by integratir(§)
characterizes vertical overturns produced by stirring eventsgyer -

The rest of the paper is organized as follows. Section Il
describes the new pdf approach for calculating the APE and _ M~
defines the new length scale. Section Il applies the pdf ap- Z(p)=H L Pp)dp, ©

proach to 2D lid-driven cavity flow and studies the effects ofWhereH —V/A is the height of the domain. The RPE can be

the nondimensional parameters on it. Section IV investigates .
: written as

the new length scale in homogeneous sheared turbulence and

relates it to other length scales. Finally, the results are sum-

marized and discussed in Sec. V.

~ 1 ~
P(p)=y | - pav. @

H
RPE=gA JO pZ/(p)dZ, . ™

We can express the reference density profile as a function of

Il. THE PDF APPROACH FOR ENERGETIC ANALYSIS the reference coordina, , i.e., p(Z;). The reference po-
tential energy then becomes
In this section, we introduce the basis for the pdf ap- y

proach and the new length scale. This approach is related to RpE:gAf p(Z)Z,dZ, . (8)
the one presented by Wintees al3 0

The calculation of the APE thus consists of the follow-
ing steps. The density field is scanned and the fluid in each

An important task in studying the energetics of oceaniccontrol volume is put into a bin. At the end of the scan, the
circulation is the evaluation of the available potential energynormalized number of control volumes in each bin gives the
(APE), the difference between the actual total potential en{df. Equation(6) is then used to compui& (p). Finally, Eq.
ergy (TPE) and the potential energy of a reference state(7) gives the RPE. As the TPE can be computed during the
(RPE. The reference state is the one with minimum poten-scan, we have enough information to compute the APE. This
tial energy that can be obtained through the adiabatic redigprocess is much more efficient than the sorting process used
tribution of the density" by Ref. 3, especially in two and three dimensions. It is easily

- applied to field or laboratory data.

APE=TPE-RPE. @ The extension of the pdf approach to an arbitrary domain

APE represents the part of the potential energy that isvith complex geometry is straightforward,(p) can be ob-
available for conversion into kinetic energy during adiabatictained directly from
readjustment. The total potential energy in a cylindrical do-

A. The pdf method

. - Z(p) PM_ o~ o~
main of volumeV is Jo A(Z)dZZVJ P(p)dp, (9)
P
TPE= J pgz dV, (3)  whereA(z) is the horizontal section area instead of constant
v section areah.
wherep is the density of the fluid angis the vertical spatial In order to ensure accuracy in calculating the RPE, we
coordinate. Note thah= p(x,t). employed an adaptive mesh in probability sample space,
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which allows for the possibility of delta functions in the fixed vertical grid. On the other hand, having the cumulative
initial density pdf, i.e., large amounts of fluid near the maxi- probability distribution, we can directly obtain spatial refer-
mum and minimum densitig&ig. 2(a)]. Specifically, we use ence stateZ, (x,t), from Z,(p). Note that the spatial refer-

a Chebyshev transformation for discretizing the sampleence state is the vertical location in the sorted fluid occupied
space instead of a uniform grid when the program detects by a parcel found atxt) in the unsorted fluid.

steep density gradient near the upper or lower bound of the Let us compare the CPU-time required to calculate the
probability space. When the probability is highly concen-reference potential energy by the pdf approach and the
trated neap,,, the mesh near the boundary is chosen suctmethod of Winterst al2 in two-dimensional(2D) lid-driven
that x;=dxcos@), 6;=0,...,m/2, anddx is the uniform  cavity flow and 3D homogeneous sheared turbulgiedle
mesh used in the other regions. Since it gives a finer grid). The difference in the computed values of the RPE is
near the boundaries, Chebyshev transformation is a goo®(10 %) in lid-driven cavity flow andO(10 %) in homoge-

choice for discretizing the pdf. neous turbulence and is primarily due to the discrete grid
used in the pdf metho¢Fig. 3). The time is normalized by
B. Comparison with the existing approach Te=poU3/L, in lid-driven cavity flow and dimensionless

shear timeS; is used in homogeneous turbulence. When the
grid count is large, the pdf analysis requires less calculation

approximation. Winteret al® used the volume integral ap- and is simpler to program. In calculating the reference state

proach. In this section, we compare the current pdf approach* by the method of Winteret al,” the CPU time is pro-

with the common method developed by Wintersal® for portional to the total number of grid points in the physical
calculating the reference potential energy. domain (N2 in two dimensions For the computation by the

For the case of the constant horizontal section, the refpdf me'_[r_lod, it de_pends only on how_the pdf is Qisc_r_etized in
erence state height,(p) is the height of the water column probab|l_|ty density space. Th_e savings are significant for
times the cumulative pdf in space Bf (x,t) defined in Ref. large grids. The pdf approach is easily extended to the three-

A method for calculating the APE was given by Dillon
and Park® and Oortet al?” based on the quasigeostrophic

3: dimensional case as shown in Sec. IV and the computational
' cost savings are much larg€rable ).
1
Ze(x )= KJV/H(’)(X B =px1))dV’, (19 . stirring length scale (L)
whereH is the Heaviside step function From the available potential energy defined above, a ver-

tical stirring length scalé.g can be defined for a two-layer

0, x<0, stratified fluid:
H(x)=1{ 3 x=0, (11
1, x>0 APE L (12
, X . = )
ooV gls

The most popular method of calculating the reference
stateZ, is to sort the density field and interpolate it onto awhere g’ =gAp/p, is the reduced gravity andp is the

TABLE |. Comparison of average CPU-time (19s) for the RPE calculation.

Flow Lid-driven cavity flow Homogeneous turbulence
Platform SunEnterprise 550MATLAB ) Cray Y-MP (F90)
Grid size 3% 32 64X 64 80x 80 128x 128%x 128
Volume integration(Ref. 3 1.35 15.60 37.66 176.66
Pdf approach 1.26 3.76 6.07 0.12
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difference between the maximum and minimum densities inMThese equations apply to both two- and three-dimensional
the domain at any timelg can be regarded as a density flows, but we will consider only the two-dimensional case.

weighted displacement. The Reynolds number is
In continuously stratified fluids, the expression fog
can be rewritten in terms of the background buoyancy fre- pe- U”dLC, (17)
quencyN: v
APE 1 2APE wherep=pg+p’, pg is the constant reference density,is
——=2-N2L%, Lg= > (13)  the gravity acceleration in the direction,L is the width of
poV 2 poVN the cavity,v is the kinetic viscosity, and is the molecular

The length scalé g is clearly a measure of stirring and is diffusivity.
affected by both overturning and the strength of the density ~ The Schmidt number is
fluctuations. In turbulent flows, the APE can be replaced by .
the fluctuating APEL g can be interpreted as the size of a Sc=—. (18)
turbulent patch generated by stirring but, as it is affected by @

weighted Thorpe scale. In the ocean, the stirring length scalg), 5| of the variables is usédion a 128 128 grid.
usually cannot be measured directly and is usually approxi- The boundary conditions for the velocity are no-slip at
mated by the Thorpe scafl.The current energy budget g of the walls. In addition, no mass or heat flux is allowed
analysis provides a way to fill this gap. at the walls. The lid velocity{;4) is constant and the initial
velocity is zero in the cavity® The velocity fields are ob-
tained using the finite volumé-V) approach, the details of
ll. APPLICATION TO LID-DRIVEN CAVITY FLOWS which are given in Hortmanret al®® and Ferziger and
Peric?
the available potential energy. First we consider initially . The density transport equation is d|scre_t|zed using a_f|-
o i . . : . -7 nite difference(FD) approach and solved using an approxi-
stratified two-dimensional lid-driven flow in a square cavity. N A
o mate factorization scheme. We apply the Crank—Nicolson
Then we shall look at homogeneous sheared stratified turbu- . .
| method for time advancement and second order central dif-
ence. o . "
ferencing in space. The scheme is unconditionally stable, but
large time steps may produce oscillations so we use a time
step of O(1072). The initial density field is a two-layer
Lid-driven cavity flow is often used to test numerical stratified flow with the density profile
methods. The governing equations for an incompressible,

We shall use two flows to illustrate the pdf method for

A. Numerical simulation of lid-driven flow

stratified flow are those of conservation of mass, momentum, . Ap erf((16m)Y4(z—2y))) 19
and the density. The Boussinesq approximation is adopted: p(2)=p 2 erf((2m)1?) ' (19)
Jdu; . . . . —. .
— =, (14  wherez,, is the vertical midpoint ang is the mean density.
IXi Typical density contours are shown in Fig. 4 for R2
9 au; 1 ap (92Ui p x 10° and Se=0.5.
—Uituj——=——_——+p——+—g, (15)
a %, Po O%i— X|0Xj  po B. Energy budgets
2
(ip+ uj a_p) —a Ip _ (16) We apply the pdf method to the lid-driven cavity flow.
ot IX; IXj0X; Figure 5 shows the evolution of the total potential energy,
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reference potential energy, and available potential energy for The pdfs of the initial and evolved states for R2
Re=1x10° and 2x10°% Sc=1 in both cases. As expected, x 10® are shown in Fig. @). The reference potential energy
the available potential energy is larger in the higher Reystatesz, (p) are shown in Fig. @).
nolds number case due to more energetic stirring. The APE  \winters et al3 derived the dynamic equations for total
and TPE are almost equal at small timesT¢<7 for Re  hoiantial energy and reference potential energy for a Bouss-
=1x10° andt/T,<10 for Re=2x10°) because there has | ; -

) L . inesq fluid. The former is
not been enough time for mixing to occur. In the final steady
state, most of the potential energy is in the form of RPE, i.e.,

the fluid is almost completely mixed.

-

¢ rre- d % d
a —_f ngX3pUini S+af fsgzaixini S
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, faces, respectively. The first term represents the contribution
. " ' - of the convective flux at the boundaries of the domain. The
%0'8' e second term is due to the diffusive mass flux at the boundary.
Bosr o el T 1 Both of these are zero in the cavity flow. The third term is
3 04f F O ] the exchange between kinetic energy and potential energy
go.z— ,," .................... . due to the buoyancy fluka reversible processThe fourth

0 == w . . L L L term is the rate of potential energy increase due to diapycnal
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FIG. 5. Time evolution of the TPE, RPE, and APE for=St. (a) Re=1
X 10°, (b) Re=2x10°.

The evolution of reference potential energy is governed
by
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d

Z, is the reference state defined in Ref. 11. Singeg /dx;
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=(dz, /dp) (dpl9x;), the third term can be expressed in terms
of —dZ, /dp. The first two terms, which are the contribu-
tions of convective and diffusive transfer across the bound-
ary, are zero in the cavity flow. The third term represents the
rate of increase of the potential energy in the reference state
due to mixing and is positive definite. An evolution equation
for the pdf could also be derived. However, the resulting
equation involves the time derivative ), leading to the
occurrence of a conditional velocity at the boundary so a
joint-pdf approach is needed to obtain a dynamic equation
for the RPE. This will make the computation costfy.

The rate of change of the available potential energy is
governed by

dE—dTPE dRPE—fff dv
di=a" gt ~at = v gpus

+af ng(pb—pu)ds—af fvf g(_z_;r>
2

J
x| P1 gv=dgt ®,— Dy, (22)
(9Xi
where the diapycnal mixing Pp=affyfg

(— dz /dp)| dplax;|?dV is always positived, is the sec-
ond term of(22) and is the rate of conversion of kinetic
energy to potential energy?® The contributions of the in-
stantaneous rate of diapycnal mixidg, , vertical buoyancy
flux (®g), and internal energyd,) to the APE are shown in
Fig. 6. Before the densities at the top and the bottom begin to
change, the contribution from diapycnal mixind ) is con-

T T — L T S
; e AT e e -
09t ; I 0.8} !
0.8f 4 bt 0.8} !
/ - - Lt i
0.7 " 0.7 !
<psl |/ <pse
E I E
D50 ¢ X
[} ; =8
B ®.
- -
03r 0.3
0.2 0. L
£ . : N A , J . , N ;
o 39 > R = o 70 o 1 2 %4 = = 70 FIG. 7. Comparison of length scales
¢ Ls, L1, Lyap, andLy e at (@ Sc
(@) (b) =0.5, Re=1x10%, (b) Sc=2, Re=1
X 10, (c) Sc=0.5, Re=2.5x 1%, and
1 T ———— e 1 Wil S Ay ] (d) Sc=2, Re=2.5x 1@. Lt maxis the
09f J 0.9¢ 7 maximum Thorpe displacement (-:
08 H 0.8t i Ls; ——:tLyi-+-iLyap; = Ly may-
; i
o7r i 0.7} ;
2 ] |
o8l ¢ <osl
:§9 / .é) A
5 D5
= 1 I 7
2 g D4l 7
- SR E Y _;-;';*\ ..;'-\,.A;';"‘.m.;\'- -
03t - DA T )
02r 0.2}
0.1
. : . . 0
30 40 50 60 70 0

Downloaded 08 Sep 2003 to 171.64.54.190. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



1288 Phys. Fluids, Vol. 13, No. 5, May 2001 Y.-h. Tseng and J. H. Ferziger

FIG. 8. The length scale ratio,
Lg/Lt3p (@ andLy /Ly 3p (b), versus

time. ——: Se2, Re=1x10% -—:
Sc=0.5, Re=2.5x10°% —: Sc=2, Re
=2.5x10°.

(b)

stant[for t/T,<7 in Fig. 6a), t/T,<9 in Fig. 6b)]. The  mum while the Thorpe scalds; and Ly sp, do not change
exchange between kinetic energy and TRg,, varies con- appreciably with ReL and Ly sp are nearly equal in this
siderably. It is of the same magnitude &g, initially and  fow as shown in Fig. 7.

decreases as the flow evolves. _ Ls increases slightly with Schmidt numbEFig. 8a)].

_ The diapycnal mixing ratepp, also increases substan- sjnce a smaller diffusivity cannot smooth out density differ-
tially as expectedlt/T;=0~13 in Fig. 6a), t/T;=0~17in  gnces as effectively, stronger density fluctuations occur at
Fig. 6b)]. After some time, the buoyancy flux is nearly zero pigh S, i.e., there is more stirring. This is reflected inbut

due to the disappearance of density fluctuations. Howevepot in L;. This does not necessarily imply higher mixing
diapycnal mixing continues and the RPE increases at alficiency. The effect of molecular diffusion on mixing effi-

times. ciency is discussed below.

. o o Because it is density weighted,5 quantifies stirring
C. Ftenf?th scale and mixing efficiency in lid-driven more reliably thanL; or Lysp. The length scale ratio
cavity flow

Ls/Lt3pin Fig. 8@ shows that there is more energetic stir-
Figure 7 compares the length scales L1, Lt3p, and  ring occurs at high Re and Sc. FiguréoBshows that the

Lt max fOr various Schmidt and Reynolds numbers. Theratio of L+/Lt3p is very close to unity except during the

Thorpe scalesl(t andLt 5p) are defined in Sec. | arid; ,,,,  initial transient. The deviation early on occurs becausés

is the instantaneous maximum bf . Lg has a maximum at a measure of overturning whiler 3, a better measure of

the same time at;. The higher Reynolds number cases stirring*

[Figs. 7c) and 7d)] have larger fluctuations of the length The dependence of the maxima lo§ and Lt ;5 on Re

scales due to more energetic stirrigs is larger at high and Scis presented in Figs. 9 and 10. Figure 9 shows that the

Reynolds numbefiFigs. 7c) and 7d)] than at low Reynolds maximum ofL s (lower lineg is roughly proportional to R&

number[Figs. 7a) and qb)], particularly at the first maxi- but the maximum oLt 3p (upper line$ is almost indepen-

T 1
—— Re=2000 0 -o- S¢=0.5
-e - Re=2500 —+- Sc=1
+- Re=4000 —— Sc=2
-~ Re=5000

p
*
<

e e o e T

Max of length scales
Max of length scales

107" 10 10
Sc Re

FIG. 9. The maximum Thorpe and stirring length scales versus Re at variFIG. 10. The maximum Thorpe and stirring length scales versus Sc at vari-
ous Schmidt numbers. The upper bold lines denote maximum Thorpe scal@sis Reynolds numbers. The upper bold lines denote maximum Thorpe
and the lower lines denote the maximum stirring length scales. The lowesicales and the lower lines denote the maximum stirring length scales. The
solid line has a slope of 1/4. lowest solid line indicates slope 1/6.
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0.18

0.16f

0141 FIG. 11. The evolution of mixing ef-
=012 ficiency for various values of Sc (—:
2 Sc=0.1; ——: Se&05; ---: Sc=1;
g o1 .—: Sc=2) at Re=2.5x10° (a) and
0,08 different values of Re (-: Rel
2008l X10% ——: Re=2X10% ---: Re=4

X 10 - —: Re=5%x10°) at Sc=1. (b)
The maximum mixing efficiency oc-
curs immediately after the maximum
overturns.

dent of Re. The behavior &fs results from the greater avail- ciency does not depend significantly on Re. However, the
able potential energy at high Re. The maximumlgfis  Reynolds number does affect the mixing efficiency at longer
approximately proportional to $& We do not want to over- times. Higher Re implies greater stirring and generation of a
emphasize the significance of these results as they are forséronger vortex. The stronger vortex induces more mixing
laminar flow. However, the results do show thaf quanti- and the mixing event lasts longgfig. 11(b)].

fies stirring better thah. 1 55. Note thatL g is uniquely de-

fined, as isLt3p, while the conventional Thorpe scalg IV. APPLICATION TO 3D STRATIFIED TURBULENCE

may depend on the sampled locations. Homogeneous turbulence subjected to shear and stratifi-

Mixing in stratified flows is usually quantified by the cation is the simplest flow in which most of the major phe-

down-gradient buoyancy flux. The mixing efficiency, is . .
) . . nomena found in geophysical turbulence occur. Thus, we
defined as the ratio of buoyancy flux to the energy available .
Y . X : apply the pdf approach to calculate its APE and compare the
for mixing.”” However, during transients or in the presence

of counter-gradient fluxes, the mixing efficiency is better de_stlrrlng scale [s) with other length scales.

fined in terms of the irreversible mixing ratd.e., the por-

tion of kinetic energy used to alter the reference potentia
energy. Thus the mixing efficiency is There have been many studies of homogeneous stratified

ARPE turbulence*3~*Rohr et al3* conducted laboratory experi-
n=— (23)  Ments on this flow and found a stationary Richardson num-
AKE ber Ri~0.25. The turbulent energy grows when<mig

where ARPE is the change in the reference potential energyweak stratificationand decays when RiRis (strong strati-
and AKE is the kinetic energy input due to the top lid and is fication. As expected, Ri measures the relative effect of
obtained by integrating the product of shear stress and li§hear and buoyancy. The length scales Lg, andL are
velocity on the top. This definition gives a time-dependenthighly correlated with the turbulence intensity in homoge-

'A. Homogeneous sheared turbulence

mixing efficiency that satisfies@7=<1. neous sheared turbulent#:
The effects of Schmidt and Reynolds numbers on the
mixing efficiency in lid-driven cavity flow are demonstrated o
in Figs. 11a) and 11b). Figure 11a) shows the mixing ef- 10 —e— Re=1000
ficiency for different values of Sc at Re2.5x10°. The -f- 2§=‘2£88

maximum mixing efficiencyy,, increases as Sc decreases; in
fact, 7y~Sc Y2 (Fig. 12 as suggested by the following
scaling analysis. For an individual fluid parcel, the mixing -
efficiency can be defined as the ratio of the mixed fluid vol- §
ume to total volume. The mixed fluid volume changes due toé’
diffusion. The mixing efficiency should be proportional to €
|/D wherel is the diffusion length scalgl ~ (at)¥?] andD

is the dimension of the parcel. Therefore, the mixing effi- -
ciency is proportional to the square root of molecular diffu-
sivity a (Sc 2. These results are consistent with previous
studies of low Reynolds number floW?? In the lid-driven
cavity, the maximum mixing efficiency occurs just after the

ciency

i

Maximum

-2 .
vertical length scalesl(s,Lt,L3p) reach their maxima. 107 10°
The effect of Reynolds number on the mixing efficiency Sc

iS_ illustrated in Fig. 1ib). Figure 11b) _ShOWS r_es_ults fqr FIG. 12. Maximum mixing efficiency versus Sc at various Reynolds num-
different values of Re at Se1. The maximum mixing effi-  bers. The solid line has slope1/2.

10
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Holt et al! demonstrated the existence of a stationaryturbulent quantities. The scheme is based on the pseudospec-
Richardson number using direct numerical simulation, gaveéral method developed by Rogalletal3® A 128x128
its dependence on Reynolds number, and suggested that 128 grid is used in this study and the stretching factors
value is independent of the initial dimensionless shear rat@,;=0.63 andB,=B3=1.26 are used to map the physical
and increases with increasing Re. Piccirillo and Van ®tta domain onto a cubic box of lengthm2 which allows for the
investigated the turbulence evolution in a homogeneoushear-induced growth of the integral scales in the streamwise
stratified shear flow using a thermally stratified wind tunneldirection®® Details of the numerical method are given in
and found a decrease of Riith increasing grid size and Holt et al! and Shihet al®’ Aliasing error is avoided by
thus increasing Reynolds number. Jacobttal > performed  using masking and random phase shiftfigrhis method
numerical investigations to explain the apparently differentresults in a residual aliasing error of the same order as the
dependence of Rion the Reynolds number and proposederror due to the time advancement scheme.
that in sheared and stratified homogeneous turbulence, the The initial energy spectrum is ak?-exponential
stationary Richardson number depends on both the Reynoldpectrunt’
number and the initial dimensionless shear rate of the flow.
Finally, a series of direct numerical simulations were per-
formed by Shiket al3’ over a range of initial Reynolds num-
bers (Re) and dimensionless shear rate3*). They found
that the final shear rat6*~11 does not depend on initial whereC is a constant antd, is the wave number at the peak
shear rate at high Re and varies at low Re, in agreement withf the spectrum. Shitet al3’ showed that the results ob-
the results of Jacobitet al*® Also, the dependence on Re is tained with this initial spectrum are very similar to those

k 2
E(k)ZC(k—> e 2Kikp, (27)
p

better correlated using a turbulent Froude nunfbeY. obtained by Jacobitet al*®
_ . . We shall investigate the effects of the Richardson, Rey-
B. Numerical simulations nolds, and Schmidt numbers. A reference casese fg is

In this study, we investigate the energy budgets an@hosen; itis a stationary turbulence run of Shtral®” with
length scales in homogeneous stably stratified turbulenf®=0.16, R&=89.4, S_C:0.7§7 and will be compared with
flow.23” The governing equations are the same as those fgther simulations. Shiket al”® suggested that the initial
lid-driven cavity flow[Egs. (14), (15), and (16)]. However shear rate is significant at low Reynolds number. In order to
the density i =p+p’ (p=po-+S,xs), Wherep is the mean include the influence of initial shear rate, the initial dimen-

= = PoT SpX3)s

density ancp’ is the fluctuating density. The mean density is SIOll’(;leSS shbear ratS*T=hSq2/e, IS ‘t excefptthln tWO. IOV\II I?ey—
composed of a constant reference dengjyand a specified nomfnnzrz‘n deirnr?rnsl;)ll ”e parameters ot these simulations are
mean density gradientS[ is a constant xs is the vertical summarize aole 1l.

coordinate. The velocity is decomposed as L
y P C. Characterization of the state of the turbulence and

u=U;+u/, (24) turbulent length scales

— . ;s . Active turbulence occurs at low Ri and is a state in
whereU; is the mean velocity and; is the fluctuating ve- . s
— which buoyancy forces are weak compared to inertial forces

locity. The mean velocity U;=(Sx,0,0), where S 5,4 45 no prevent overturning and mixing. At high Ri, tur-
=dU,/dx3 is the speuﬁed mean shear rate. The m|croscal%u|ence is suppressed by buoyancy on all scales. We are
Reynolds number is interested in the behavior of the stirring scalg and its
O\111 comparison with other length scales in these flows.
Reo=—1", (25) It is well known that for RKRig, Lo, Lg, andLy grow
when the flow is fully developed. Buoyancy controls the
where\ ., is the Taylor microscale)j;. = u//uj,, where  growth of the largest turbulent eddies. Active turbulence ex-
primes denotes root mean square quantitiesd q is the  ists at the large scalésFor Ri>Rig, Lo, Lg, andLt de-

root mean square velocity. crease as buoyancy suppresses the turbulent eddies. Counter-
The strength of the stratification is indicated by the gra-gradient fluxes may appear and internal waves become a
dient Richardson number significant component of the flow. Comparisons of the stir-
N2 —(g/po)S ring, Thorpe, and Ellison scales are shown in Figs. 13 and
Ri=— = 9 ZO £ (26) 14.Lg, Lg, andLt 3p are all affected by internal waves.
S S

where N=[ — (g/p) (dpldz)]*? is the Brunt—Visda fre-

guency. Ri is constant in each simulation. Other parameteryBLE II. Parameters of 3D homogeneous shear turbulence simulations.

are identical to those used previously. The gravitational ac=

celeration is §=980.7 cm/é) and reference densitypf :

=1.006 g/cm) are not varied in this study. Ri 88-24 88-‘116 82-30 22-16 22'}16 42-%6 42-%6 88-}16 88-16
The (?ode solyes for the three-dimensional veloqty and;C e 072 072 072 072 072 072 01 4

density fields using second order Runge—Kutta time adgx 4 4 4 4 8 4 8 4 4

vancement and periodic boundary conditions for all of the

Cases bl fdstat) bp px pk gc gk fx fy
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% DIRi=.04)
o fe
o bp(Ri=1)
« Px(Re=22)
gc(Re=44)
; pk(Re=22,S:=8) @g
102 o gk(Re=44,5'=8) Lk
# fx(Sc=.1) xwgm = . L.
K 2 fy(Sc=4) L ox AR A0 f FIG. 13. Comparison of stirring scale
o o © °0 ﬁa’f (Lg) and the Thorpe scal¢t; (8) and
v v N Lt3p (b)]. The solid line has slope
1079 1 é@p unity.
v
v
; 107° s
10° 107° 107 10° 107 10™ 10°
L Lran
(a) (b)

Figure 13 compares the stirring and Thorpe scales ( Lg is a local quantity and may not be easy to compute accu-
and Lt3p). The scales are linearly related except at highrately. On the other hand, the stirring scalss) is a global
Richardson number (Ril) and low Reynolds number quantity and is easily computed if the density field is known.
(Re,=22). In the former case, internal wave motions con-Thus,Lg is a better indicator of the overall state of the flow
tribute significantly to available potential energy, but do notthanLg. As already noted.. g can be regarded as a density
affectL. Similarly, the Ellison Lg) and Thorpe scales are fluctuation weighted generalization of the Thorpe scale and
closely related. A high correlation betweet.t 35 and Lg is more similar to the 3D Thorpe scale than to the Ellison
was observed in a Kelvin—Helmholtz instability simulation scale in many turbulent flows.

[compare Figs. @) and 1Qa) of Smyth and Moum L can also be correlated wi#f vN?, a parameter often
(2000'%]. The correlation is easily demonstrated for a singleused in oceanic research to describe the state of the
overturning particle, but it is more difficult to explain in two turbulence’®? There is some disagreement as to the physical
and three dimensions. It is interesting to note thais pro-  interpretation of this quantity. Some researchers refer to it as
portional toL 3p, probably because the density fluctuationsa buoyancy-based Reynolds nunféwhile others refer to

are the saméin a statistical sengeeverywhere in the flow. it as a small scale Froude numb@and still others consider
Strong shear reduces both the stirring and Thorpe scales #ta mixed parametel’ We believe that, because it contains
low Reynolds number. The shear rate does not have a sidpoth the viscosity and the buoyancy frequency, the last in-
nificant effect on the length scales. terpretation is to be preferred.

The comparison ok g andLg is shown in Fig. 14L g is Active turbulence is supposed to be present only when
linearly correlated with_g in all cases. That this should be e/vN? exceeds a certain critical value=@0). We show the
so for homogeneous turbulence can be demonstrated as fohtio Lg/L, vs e/ vN? in Fig. 15, wherel, is the integral
lows. Consider a particle whose density is greater than thecale of the turbulence and is defined as the average of the
reference density at its vertical position @p. Then ¢  diagonal integral scales; ie., Li=1;/3, ljjx
—Z,) can be approximated byZ, /dp)Sp. The fluctuat- = f(u;(Xm)uj(Xm+tri))dr/(uju;). All of the data lie in the
ing available potential energff APE) is the volume integral active turbulence regiofbuoyancy-affected turbulencex-
of p'g(z—2,) for the whole domaing’ is the density fluc-
tuation and can be related tog by

10

% DI(Ri=.04)
— 4 — fc
FAPE fvp 0(z—2,)dVv g op(Ri=1)
« Px(Re=22)
0Z, (p,)z + gc(Re=44) .
%f p’g(—dp)dV: g——dV o Pk(Re=22,S =8)
v ap V™ dplaz o gk(Re=44,5'=8) ﬁ
% X(Sc=.1)
~gVpmd e, (28) Mot A fy(Se=4) W#
which shows that the fluctuating available potential energy is vﬁ)@
proportional toLg and p;ms. SinceLs= V2FAPE/poVN?, it "
is easy to show that the stirring scdlg is proportional to é@s@
\/p’LE/(&p/&Z)=LE. v
This result can also be explained by considering the v
available potential energy at a particular point in homoge- 107 ,
neous turl:ylence. The FAPE can be correlated g0 i.e., 1072 107! 10°
FAPE=1/2pN?LZ (Refs. 1 and 3Pso L is proportional to fe

local \/FAP_E/N . T_his indicates_ thak g is %%iz%d MEeAasure kG, 14. Comparison of stirring scale ) and Ellison scalel(g). The solid
of fluctuating available potential enerdy>3°*° However, line has slope unity.
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107" . : the turbulencé® On the other hand, g measures the avail-
able potential energy. Thukg must be large beforeg can
grow. Physically, kinetic energy is converted into potential
Ao B % energy untilLs andLg are comparable. This point is referred
o @g i' o to as a buoyancy-inertia transition by Gib&bnand
[5§++ R Yamazaki®® In low Re simulations| g departs fromLg at
_ _ small e/ vN? (the critical value ofe/ vN? is around 20 and 10
jluﬂo_z' vx x ¥ DIRi=.04) for Re=44 and 22, respectively The departures mark the
oY & o fo beginning of buoyancy-controlled turbulence. The parameter
o v bp(Ri=1) 2 . .
Q Y px(Re=22) e/ vN< reflects the influence of Reynolds number and is thus
© + gc(Re=44) a good correlation parametéfig. 16.
v o pk(Re=22,S*=8)
v o gk(Re=44,S =8)
% fx(Sc=.1)
|  ySot) V. DISCUSSION AND CONCLUSIONS
1010-1 10° 10" 102 10° In this study, we investigated energy budgets and mixing
elv N2 through the analysis of available potential energy. A prob-

FIG. 15. The ratio of stirring and integral scaldss(L,) vs e/vN2. The
solid line marks the onset of active and fossil turbulence.

ability density function approach was introduced and used to
efficiently calculate the available potential energy. The pdf
method is equally well suited for numerical and experimental
determination of the APE and is more efficient than sorting

cept those from the high Ri and low Re simulations in whichmethods. We also proposed a new length scalg that is a
the turbulence undergoes a transition from active to buoygeneralized density-fluctuation weighted Thorpe scale. This
ancy dominated. Turbulence is completely suppressed in thength scale has a clear physical interpretation and is a reli-
high Ri simulation and_gs decays. Thud, g andL, are com- able parameter for gauging the strength of stirring. It is easy
parable in the active turbulence region. In the transition fromto obtain once the reference potential energy has been com-
active to buoyancy-dominated turbulence there is an intermeauted.
diate region in which there is a mix of active and fossil Lid-driven cavity flow and homogeneous sheared turbu-
turbulence. The region was called buoyancy-controlled byence were used to illustrate the proposed method. More stir-
ltsweireet al? and, in it, the turbulence is not in equilibrium; ring occurs as Re increases but molecular diffusivity has
in fact it decays. The onset of buoyancy control occurs atittle effect on it. The effect of Re oh g is more significant
e/ vN?~60 according to Fig. 15. We thus see that the lengttthan the effect of Sc, but the latter has a strong influence on
scale (g) can be used as an indicator of the state of themixing. Thus, Sc affects the mixing efficiency more than the
turbulence. Finally, we note thats does not change signifi- Reynolds number does. The maximum mixing efficiency is
cantly in stationary turbulence (RRig) and increases proportional to Sc*? in lid-driven cavity flow. The depen-
slightly as Sc increasd§ig. 15. dence on Re is mainly due to the enhancement of stirring.
Figure 16 shows the ratios dfg/Lg and Lg/Lg vs In homogeneous sheared turbulence, the Richardson and
e/ vN?. The trends are similar sindgy andL g are very close  Reynolds numbers are the important parameters. Higher Ri
except in cases in which internal waves dominate so they caand lower Re reduce the stirring scale. As Sc incredsgs,
be used interchangeably as long as the turbulence is activincreases. However, the effect is not as significant as it is in
Ls andLg are roughly equal whea/ YN2< 100 at high Rey- the lid-driven cavity flow. The new length scaled) exhib-
nolds number, as has been shown in laboratory experimenits the same behavior as the Ellison and 3D Thorpe scales but
and ocean measuremefisSincel ; represents the rms ver- is superior to those scales for characterizing the turbulent
tical distance that a particle with the rms kinetic energy careddies because it is weighted with the density fluctuations. In
travel, it also is an indicator of the vertical kinetic energy of addition, it is affected by internal waves and is a global mea-

107
o 107 v v i
%% » Vv v
vV g v %oxv v o} ° v
x By ; . -
&£ _ o x ‘5%; LN ;:Z *x %++ &OA FIG. 16. (a) The ratio of stirring scale
” o
- o i * &, A - x R, to buoyancy scalel(s/Lg) vs e/ vN2.
v ';5(‘2522’2) °oxE s o o (b) The ratio of stirring scale to Ozmi-
x
+ go(Re=dd) £, 107 x o dov scale [s/Lo) vs e/ vN2,
o Pk(Re=22,8'=8)
o gk(Re=44,5=8) L p
% fx{Sc=.1)
s tse=e
1010" 10° 10' 10° 10° 107" 10° 10’ 10° 10°
ev N2 ev N2

(b)
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