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Abstract. Research has already shown that turbulent flow consists of some coherent time- and
space-organized vortical structures. Some dynamic systems and experimental models are employed
to understand the turbulent generation mechanism. However, these approaches still cannot provide a
good nonlinear analysis of turbulent time-series. In the real turbulent flow, very complicated nonlin-
ear behaviors, which are affected by many vague factors are present. Based on the nonlinear behavior
and the results of from this traditional research, we introduce multivariate statistical analysis of an
experimental study to explain practical phenomenon. In this paper, a new approach of fuzzy piece-
wise regression analysis with automatic change-point detection is proposed to predict the nonlinear
time-series of turbulent flows. In order to show the practicality and usefulness of this model, we
present an example of predicting the near-wall turbulence time-series as a verifiable model. The
results of practical applications show that the proposed method is appropriate and appears to be
useful in nonlinear analysis and in fuzzy environments to predict the turbulence time-series.
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1. Introduction

The turbulent flow research has long been dominated by the Reynolds Averaged
Navier–Stokes Equations, energy equations and state equations. In recent decades,
Direct Numerical Simulation (DNS) and Computational Fluid Dynamics (CFD)
code play important roles in turbulent simulation modeling due to the improvement
of computer technology.

Most research has focused on understanding the characteristics of turbulence
and using semi-empirical theories to fit the experimental data, as evidenced by
the volumes of publications involving experimental data, mathematical analysis,
and computational modeling, e.g. [1–6]. These methods can be used to estimate
the characteristics by using statistical analysis and fitting the parameters from the
experimental data.
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In near-wall regions, a large production occurs and the presence of nonlinear-
ity becomes significant. Many studies have concentrated on the mechanism of
near-wall turbulence and the coherent vortical structure of bursting, e.g. [6, 7].
Aubry et al. [7] employed a dynamical systems approach to study the behav-
ior of streamwise vortices in the near-wall region of turbulent boundary layers.
They investigated the intermittent behavior of the streamwise vortices, similar to
the bursting events widely observed in the near-wall region and showed that the
bursting behavior is produced autonomously near wall and that the structure and
duration of the bursts is determined there. They provided a good insight into re-
lating low-dimensional chaotic dynamics to a realistic turbulent boundary layer
flow through the formation of longitudinal vortices and the flow evolution based
on instability. Hamilton et al. [6] used direct numerical simulations to study the
regeneration dynamics of turbulent structure found in the near-wall region. The
authors attempted to understand the self-regeneration mechanism and the charac-
teristic spanwise spacing of the structures commonly observed in the near-wall
region of turbulent flows. These studies can identify many main features of the
near-wall dynamics and provide important information concerning the physical
basis of turbulent generation mechanisms. One important feature in the near-wall
turbulence is that these instantaneous characteristics of the velocity, intensity and
location (relative distance) are all dependent on time-series and are interrelated.
Time-series analysis with these correlations then becomes an important clue about
how to approach the study of the turbulence. However, in this field only a few pa-
pers that appear in publications about turbulent flow depend on time-series [8–12].
Porporato and Ridolfi [12] applied the nonlinear time-series analysis to a near-
wall turbulence signal in a hydraulically smooth pipe. They measured the signal
using a Laser Doppler Anemometer (LDA) as time-series observation and applied
a nonlinear chaotic prediction to a high-dimensional system, thus producing fore-
casts of rapidly decreasing quality over time. Their work did not tend to practical
applications.

In practical circumstances, it is difficult to grasp rules for predicting the nonlin-
ear turbulent behavior and to forecast the velocity and intensities of the turbulent
flow at different times. Therefore, the purpose of this paper is to develop a pre-
dictable model for grasping the information of the turbulent behaviors in advance
and to understand the characteristics by time-series data. Based on this informa-
tion obtained from the turbulent behaviors, another new fuzzy reasoning rule for
prediction on chaotic time-series model could be developed in a subsequent paper.

To accomplish this, we apply a new approach of fuzzy piecewise regression
analysis to predict the nonlinear time-series of near-wall turbulent flows with au-
tomatic change-point detection. The idea of this method was developed by Tzeng
and computer runs were tested in [13, 14]. The method can grasp the dynamics
of nonlinear time-series of flow character and path. The observed information of
turbulent flow can be reconstructed piecewisely. In order to show the practicality
and usefulness of this model, an example for predicting the near-wall turbulence
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time-series is validated by subjectively taking 11 sample points of the time-series
experimental data. From the results of practical applications, the proposed method
is appropriate and can be used for nonlinear behavior in fuzzy environments to
predict the turbulence time-series.

This paper is organized as follows. Section 2 introduces the idea of developing
a new approach for solving nonlinear time-series in near-wall turbulence. Section 3
reviews the conventional fuzzy regression analysis and proposes a fuzzy piecewise
regression analysis with automatic change-point detection for predicting turbulent
time-series. Section 4 provides an example for predicting the near-wall turbulence
time-series with the fuzzy piecewise regression method and discusses the predicted
results. Finally, Section 5 presents the conclusions.

2. Developing a New Approach for Solving Nonlinear Time-series in
Near-Wall Turbulence

The possibility theory on possibility distribution has been proposed by Zadeh [15]
and advanced by Dubois and Prade [16]. Tanaka et al. [17] introduced a linear
programming (LP) based regression method using a linear model with symmet-
rical triangular fuzzy parameters and then defined the possibility and necessity
regression analyses [18]. Sakawa and Yano [19, 20] recently generalized the mini-
mization, maximization and conjunction formulation developed by Tanaka and co-
workers [18, 21]. However, two weaknesses involving the fuzzy regression model
have arisen. First, in possibility analysis, Redden and Woodall [22] demonstrated
that Tanaka’s methodologies were extremely sensitive to outliers. Furthermore, the
fuzzy predictive interval tends to become fuzzier as more data are collected and
has no operational definition or interpretation. Second, in necessity analysis, the
necessity area would not be obtained owing to the large variation in data [13, 14, 18,
23]. Tanaka et al. [18] suggested a polynomial or nonlinear model to deal with the
above problems. Since the distribution of data is probably segmented, Yu et al. [13,
14] proposed two approaches applicable to avoid these problems: one is to use the
piecewise model to address the necessity problem and the other is to use the fuzzy
piecewise regression to address the automatic change-point detection of nonlin-
ear observations. They proposed a general piecewise necessity regression analysis
based on linear programming (LP) to obtain the necessity area from nonlinear data
behavior. The unique characteristic of their method is that, according to data distri-
bution, even if the data are irregular, practitioners must specify the number and the
positions of change-points [11]. However, as the sample size increases, the number
of change-points increases and the piecewise linear interval model also becomes
complex. Therefore, controlling the number of change-intervals and obtaining a
parsimonious regression model efficiently is a serious problem. Porporato and Ri-
dolfi [12] applied the nonlinear chaotic analysis to a near-wall turbulence signal,
measured using a Laser Doppler Anemometer in time-series data. They showed
that a nonlinear prediction to a system of high-dimension could produce forecasts
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of rapidly decreasing quality over time and that it was not suitable for practical
applications. Hence, we try to adopt the piecewise concept to implement fuzzy
piecewise regression for solving nonlinear turbulent time-series trends. We apply
a general fuzzy piecewise regression analysis with automatic change-point detec-
tion proposed by Yu et al. [14] to obtain the regression model and change-points
simultaneously.

Fuzzy piecewise possibility and necessity regression models are used when the
function behaves differently in different parts of the range of crisp input variables.
This means that the above problem can be formulated as a mixed-integer program-
ming problem for solving fuzzy piecewise regression. The proposed fuzzy piece-
wise regression method for solving nonlinear turbulent time-series has four merits:
(a) it can be used to predict the nonlinear turbulent time-series data; (b) if the num-
ber of change-points is previously specified, then the positions of change-points
and the fuzzy piecewise regression model are obtained simultaneously; (c) by
using the mixed-integer programming, the solution is the global optimal rather
than local optimal solution; (d) it is more robust than conventional fuzzy regres-
sion. The conventional regression is sensitive to outliers. In contrast, based on a
piecewise concept, the proposed method can deal with outliers by segmenting the
data automatically. Therefore, in this work we focus on building an appropriate
model that can be easily used to predict the nonlinear trends of turbulence time-
series. The details of general fuzzy piecewise regression analysis with automatic
change-points detection are provided in Yu et al. [14].

3. Fuzzy Piecewise Regression Model with Automatic Change-Point
Detection

In this section, we will build a fuzzy piecewise regression model with automatic
change-point detection. The concept of interval arithmetic is introduced in Sec-
tion 3.1. A fuzzy piecewise regression model with automatic change-point detec-
tion applied to predict the nonlinear time-series of turbulent flows is described in
Section 3.2.

3.1. THE CONCEPT OF INTERVAL ARITHMETIC

A linear interval model with independent variables is presented using interval pa-
rameters Ai (i = 0, 1, 2, . . . , q) as

Y (xt ) = A0 + A1x1t + · · · + Aqxqt , (1) (1)

where Y (xt ) is the predicted interval corresponding to the input vector xt and t

is the time datum (t = 1, 2, . . . , n) and xt = (x1t , x2t , . . . , xqt ). In short, x =
(x1, x2, . . . , xq) is a q-dimensional input vector. Throughout this work, closed in-
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tervals are denoted by capital letter A and B. An interval is defined by an ordered
pair in brackets as

A = [aL, aR] = [a : aL ≤ a ≤ aR], (2)

where aL denotes the left limit and aR denotes the right limit of A. Interval A is
also denoted by its center and width (radius) as

A = (ac, aw) = {a : ac − aw ≤ a ≤ ac + aw}, (3)

where ac denotes the center and aw denotes the width (radius, aw ≥ 0), i.e., half of
the width of A. From Equations (2) and (3), the center and the radius of interval A
can be calculated as

ac = (aR + aL)/2, (4)

aw = (ar − aL)/2. (5)

The following additions and multiplications are used hereafter

A + B = (ac, aw)+ (bc, bw) = (ac + bc, aw + bw), (6)

rA = r(ac, aw) = (rac, |r|aw), (7)

where r is the real number.

3.1.1. Linear Interval Model

The following linear model of Equation (1) is represented in detail

Y (xt ) = A0 + A1x1t + · · · + Aqxqt

= (a0c, a0w)+ (a1c, a1w)x1t + · · · + (aqc, aqw)xqt

= (Yc(xt ), Yw(xt )), (8)

Yc(xt ) = a0c + a1cx1t + · · · + aqcxqt , (9)

Yw(xt ) = a0w + a1w|x1t | + · · · + aqw|xqt |, (10)

where Yc(xt ) represents the center and Yw(xt ) is the width of the predicted interval
Y (xt ).

3.1.2. Possibility Regression Analysis

Y ∗(xt ) = A∗
0 + A∗

1x1t + · · · + A∗
qxqt

= (a∗
0c, a

∗
0w)+ (a∗

1c, a
∗
1w)x1t + · · · + (a∗

qc, a
∗
qw)xqt

= (Y ∗
c (xt ), Y

∗
w(xt )), (11)
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which satisfies the following conditions:

Yt ⊆ Y ∗(xt ), t = 1, 2, . . . , n, (12)

where Yt is the t th observation time.

3.1.3. Minimization Problem for Interval-Valued Data

Minimize Y ∗
w(x1)+ Y ∗

w(x2)+ · · · + Y ∗
w(xn) (13)

Subject to Y ∗(xt ) ⊇ Yt, t = 1, 2, . . . , n (14)

a∗
iw ≥ 0, i = 1, 2, . . . , q, (15)

This LP problem is written as follows:

Minimize
n∑
t=1

(a∗
0w + a∗

1w|x1t | + · · · + a∗
qw|xqt |) (16)

Subject to

(
a∗

0c +
q∑
i=1

a∗
icxit

)
−
(
a∗

0w +
q∑
i=1

a∗
iw|xit |

)
≤ YtL,

t = 1, 2, . . . , n (17)(
a∗

0c +
q∑
i=1

a∗
icxit

)
+
(
a∗

0w +
q∑
i=1

a∗
iw|xit |

)
≥ YtR,

t = 1, 2, . . . , n (18)

a∗
0w, a

∗
iw ≥ 0, i = 1, 2, . . . , q. (19)

The weakness in the above model is that it is sensitive to outliers. The model
used to have larger possibility than the system should have and used to be warped
and bent too much by various fluctuating data. The fuzzy predictive model tends
to become fuzzier as more data are collected and has no operational definition or
interpretation.

3.1.4. Necessity Regression Analysis

Y∗(xt ) = A0∗ + A1∗x1t + · · · + Aq∗xqt

= (a0c∗, a0w∗)+ (a1c∗ , a1w∗)x1t + · · · + (aqc∗ , aqw∗)xqt

= (Yc∗(xt ), Yw∗(xt )), (20)

which satisfies the following conditions:

Y∗(xt ) ⊆ Yt, t = 1, 2, . . . , n. (21)
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3.1.5. Maximization Problem for Interval-Valued Data

Maximize Yw∗(x1)+ Yw∗(x2)+ · · · + Yw∗(xn) (22)

Subject to Y∗(xt ) ⊆ Yt, t = 1, 2, . . . , n (23)

aiw∗ ≥ 0, i = 1, 2, . . . , q. (24)

This LP problem is written as follows:

Maximize
n∑
t=1

(a0w∗ + a1w∗ |x1t | + · · · + aqw∗ |xqt |) (25)

Subject to

(
a0c∗ +

q∑
i=1

aic∗xit

)
−
(
a0w∗ +

q∑
i=1

aiw∗ |xit |
)

≥ YtL,

t = 1, 2, . . . , n (26)(
a0c∗ +

q∑
i=1

aic∗xit

)
+
(
a0w∗ +

q∑
i=1

aiw∗ |xit |
)

≤ YtR,

t = 1, 2, . . . , n (27)

a0w∗, aiw∗ ≥ 0, i = 1, 2, . . . , q. (28)

The above LP formulation of necessity has no feasible solution owing to large
fluctuations of the given data. Therefore, a fuzzy piecewise regression was pro-
posed by [13] for treating such problem. In [13], the change-points are given before
employing the above method. For overcoming this restriction, Yu et al. [14] devel-
oped a general fuzzy piecewise regression analysis with automatic change-point
detection.

3.2. FUZZY PIECEWISE REGRESSION MODEL WITH AUTOMATIC

CHANGE-POINT DETECTION FOR PREDICTING THE NONLINEARITY OF

TURBULENCE TIME-SERIES

Change-points, which are the joints of pieces, are quoted from conventional statis-
tical piecewise regression [24]. This terminology is used through out the research.
For an input single variable x, the time-serial points {p1, p2, . . . , pk} are the values
of single variable x and are subject to an ordering constraint p1 < p2 < . . . < pk,
k ≤ n. This work of Yu et al. [14] assumes that every datum is a potential change-
point except pk. Therefore, change-point alternatives are in the initial possibility
and necessity regression model. The suspected positions of change-points are p =
{p1, p2, . . . , pk−1}.
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DEFINITION 1. The point pj is a change-point if B(|bc| ≥ δ, bw). δ is a small
positive value specified by the user. Otherwise, pj is not a change-point if B(|bc| <
δ, bw = 0).

If pj is a change-point, then the operation of piecewise term is as follows:

(|xt − pj | + xt − pj)/2 =
{
xt − pj , if xt > pj ,

0, if xt ≤ pj ,
(29)

where j = 1, 2, . . . , k − 1.
An LP formulation is presented to determine the possibility area and necessity

area by the piecewise linear interval model. For the sake of simplicity, we demon-
strate the proposed method with the piecewise interval model by using an input
single variable x

Ŷ (xt ) = h(xt )+ B1(|xt − p1| + xt − p1)/2

+ B2(|xt − p2| + xt − p2)/2 + · · ·
+ Bk−2(|xt − pk−2| + xt − pk−2)/2

+ Bk−1(|xt − pk−1| + xt − pk−1)/2,

h(x(t) = A0 + A1xt . (30)

Equation (30) represents Y ∗(xt ) and Y∗(xt ) in the initial possibility and ne-
cessity model respectively. After prespecifying the number of change-points by
practitioners, the fuzzy regression model and the positions of the change-points are
obtained simultaneously. The piecewise terms of LP formulation are as follows:

B1(|xt − p1| + xt − p1)/2 + B2(|xt − p2| + xt − p2)/2 + · · ·
+ Bk−2(|xt − pk−2| + xt − pk−2)/2

+ Bk−1(|xt − pk−1| + xt − pk−1)/2, t = 1, 2, . . . , n. (31)

The difference between Equations (30) and (11) is Equation (31). That is the
initial piecewise expression for the given data.

B1(|xt − p1| + xt − p1)/2 + B2(|xt − p2| + xt − p2)/2 + · · ·
+ Bk−2(|xt − pk−2| + xt − pk−2)/2

+ Bk−1(|xt − pk−1| + xt − pk−1)/2

=
k−1∑
j=1

bjc(|xt − pj | + xt − pj)/2

+
k−1∑
j=1

bjw(|xt − pj | + xt − pj )/2, t = 1, 2, . . . , n. (32)
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The initial possibility formulation with q input variables (multiple variables of
effect factors) is as follows:

Y ∗(xt ) = A∗
0 +

q∑
i=1

A∗
i xit

+
q∑
i=1

kt−1∑
j=1

B∗
ij (|xit − pj | + xit − pj)/2, t = 1, 2, . . . , n. (33)

3.2.1. Possibility Analysis with Automatic Change-Point Detection

Minimize

Zp =
n∑
t=1


a∗

0w +
q∑
i=1

a∗
iwxit +

q∑
i=1

kt−1∑
j=1

b∗
ijw(|xit − pj | + xit − pj )/2


 (34)

Subject to
a∗

0c +
q∑
i=1

a∗
icxit +

q∑
i=1

k∗−1∑
j=1

b∗
ijc(|xit − pj | + xit − pj)/2




−

a∗

0w +
q∑
i=1

a∗
iwxit +

q∑
i=1

k∗−1∑
j=1

b∗
ijw(|xit − pj | + xit − pj )/2


 ≤ YtL,

t = 1, 2, . . . , n, (35)
a∗

0c +
q∑
i=1

a∗
icxit +

q∑
i=1

k∗−1∑
j=1

b∗
ijc(|xit − pj | + xit − pj)/2




+

a∗

0w +
q∑
i=1

a∗
iwxit +

q∑
i=1

k∗−1∑
j=1

b∗
ijw(|xit − pj | + xit − pj )/2


 ≥ YtL,

t = 1, 2, . . . , n, (36)

b∗
ijc < Mut − 2δvj + δ + ϕvj ,

i = 1, 2, . . . , q; j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n, (37)

b∗
ijc > 2δuj −Mvj − δ − ϕuj ,

i = 1, 2, . . . , q; j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n. (38)

vj + uj = Ij , j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n, (39)
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m−1∑
j=1

Ij ≤ C, (40)

b∗
jw ≤ MIj, j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n. (41)

The initial necessity formulation with input variables (multiple variables) is as
follows:

Y∗(xt ) = A∗0 +
q∑
i=1

Ai∗xit

+
q∑
i=1

ki−1∑
j=1

Bij∗(|xit − pj | + xit − pj)/2, t = 1, 2, . . . , n. (42)

3.2.2. Necessity Analysis with Automatic Change-Point Detection

Maximize

Zp =
n∑
t=1


a0w∗ +

q∑
i=1

aiw∗xit +
q∑
i=1

kt−1∑
j=1

bijw∗(|xit − pj | + xit − pj)/2


 (43)

Subject to
a0c∗ +

q∑
i=1

aic∗xit +
q∑
i=1

k∗−1∑
j=1

bijc∗(|xit − pj | + xit − pj)/2




−

a0w∗ +

q∑
i=1

aiw∗xit +
q∑
i=1

k∗−1∑
j=1

bijw∗(|xit − pj | + xit − pj)/2


 ≤ YtL,

t = 1, 2, . . . , n, (44)
a0c∗ +

q∑
i=1

aic∗xit +
q∑
i=1

k∗−1∑
j=1

bijc∗(|xit − pj | + xit − pj)/2




+

a∗

0w +
q∑
i=1

a∗
iwxit +

q∑
i=1

k∗−1∑
j=1

b∗
ijw(|xit − pj | + xit − pj )/2


 ≥ YtL,

t = 1, 2, . . . , n, (45)

bijc∗ < Mut − 2δvj + δ + ϕvj ,

i = 1, 2, . . . , q; j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n, (46)
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bijc∗ > 2δuj −Mvj − δ − ϕuj ,

i = 1, 2, . . . , q; j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n. (47)

vj + uj = Ij , j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n, (48)

m−1∑
j=1

Ij ≤ C, (49)

bjw∗ ≤ MIj, j = 1, 2, . . . , kt − 1; t = 1, 2, . . . , n. (50)

where uj , vj , Ij ∈ {0, 1}; δ denotes a small positive value and δ > ϕ; b∗
ijw and

bijw∗ are unconstrained in sign. M is a large positive constant and can be specified
as M ≥ Max{|b∗

ijc| and |bijc∗|, i = 1, 2, . . . , q, j = 1, 2, . . . , kt − 1 and t =
1, 2, . . . , n}. Equations (37) to (41) and Equations (46) to (50) are checked to see
whether they satisfy the definition of change-point in Definition 1. For example, in
possibility regression analysis:

(i) If b∗
ijw ≥ δ, then uj = 1 and vj = 0 (from Equations (37) to (39));

(ii) If b∗
ijw ≤ −δ, then uj = 0 and vj = 1 (from Equations (37) to (39));

(iii) If |b∗
ijc| < δ, then uj = vj = 0 (from Equations (37) to (39));

we know (i), (ii) and (iii) demonstrate that if |b∗
ijc| ≥ δ, (i.e., a change-point

occurs in the j th position), then uj + vj = Ij = 1, and otherwise uj + vj =
Ij = 0;

(iv)
∑m−1

j=1 IJ ≤ C limits the number of change-points. C is a reasonable measure-
ment of the number of change-points that depend on data distribution (from
Equation (40));

(v) bjw∗ ≤ MIj implies if b∗
ijc = 0 then b∗

ijw = 0 (from 41).

Practitioners previously specified the number of change points (C) by using ob-
served data (plotted drawing). Then, they can obtain the positions of change inter-
val and the fuzzy piecewise regression model simultaneously. In possibility analy-
sis, based on piecewise characteristics, our methodology is insensitive to outliers.
Furthermore, the fuzzy predicted interval does not tend to become fuzzier as more
data are collected. In necessity analysis, practitioners do not need to consider the
cases in which we could not obtain a necessity area regardless of regular or ir-
regular data. All the practitioners have to do is to specify the conceivable number
of change-points (C). The detected change-points or their neighborhood can be
viewed as outliers under some circumstances. The proposed piecewise method is
more robust than the conventional fuzzy regression. By using mixed integer pro-
gramming, this method can give the global optimal solution to grasp the trends for
predicting the nonlinearity of turbulence time-series.
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Figure 1. The relation between times (s) and velocity (m/s) by time-series experimental data
(from Porporato and Ridolfi, [12]).

4. Case of Nonlinear Type of Near-Wall Turbulence Time-Series

In this section, in order to show the practicality and usefulness of the method
described in the above section, a case for predicting the near-wall turbulence time-
series is taken as a validated model. Porporato and Ridolfi [12] discovered a phe-
nomenon which the near-wall turbulence time-serial data is nonlinear from the
experiments, measured using a Laser Doppler Anemometer. They applied a non-
linear chaotic prediction to a high-dimension system and produced forecasts of
rapidly decreasing quality over time, with no consequences for practical applica-
tions. They use a trace of the direct prediction with forecast interval = 5×3×%t =
160.40 ms: the correspondence with reality is optimum and maintained during the
strong and extended velocity gradients. Their result is shown in Figure 1. Although
the forecast is worse globally and the rapid oscillations largely escape the method,
the large-scale behavior is still well captured, and even the strong velocity gra-
dients are forecasted with an accuracy equal to that of the small- scale motions
by their research. However, when forecast interval is slightly above the traditional
Kolmogorov time-scale, the forecast is rather poor.

Therefore, we try to use a new approach of fuzzy piecewise regression analy-
sis to predict the nonlinear time-series of turbulent flows with automatic change-
point detection. The idea of this method was developed by Tzeng and computer
runs were tested by Yu [13, 14]. The testing data used here as an example were
taken subjectively using eleven equally spaced sample points of time-series from
Figure 1. By using the piecewise concept, the possibility and necessity area rep-
resented by a piecewise linear interval model rather than a nonlinear interval re-
gression one can be obtained. By adjusting the under terms of h(x), the proposed
method can also be presented as the nonlinear interval model in time period of time-
series. In the following example, for the sake of simplicity, h(x) is a linear interval
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function. If the property of data is nonlinear as Figure 1 (near-wall turbulence time-
series), we can adjust the order term of h(x) and, then, Y ∗(x) and Y∗(x) will turn
into a nonlinear piecewise interval regression model.

4.1. TESTING MODEL AND EXPLANATION

EXAMPLE. Let us consider the following interval of data value according to Fig-
ure 1 to test and explain this concept easily, and assume taking rough raw data as
follows:

{(x, y)} = {(0, [0.0248, 0.0260]), (1, [0.0203, 0.0210]), (2, [0.0185, 0.0208]),
(3, 0.0161, 0.0173]), (4, [0.0167, 0.0189]), (5, [0.0160, 0.0165]),
(6, [0.0235, 0.0270]), (7, [0.0270, 0.0282]), (8, [0.0227, 0.0245]),
(9, [0.0225, 0.0238]), (10, [0.0232, 0.0243]).

We divided the time-serial data into 10 segments from the experimental results and
use 11 samples of time-series to test this method. Very few data is used in order to
demonstrate the practicality of this model. The time-series xt ranges from 0 to 10.
We use p1 = 0, p2 = 1, p3 = 2, p4 = 3, p5 = 4, p6 = 5, p7 = 6, p8 = 7, p9 = 8,
p10 = 9, p11 = 10 as change-points.

The initial possibility model of nonlinear time-series shown as linear piecewise
model is as follows:

Y ∗(xt ) = (a∗
0c, a

∗
0w)+ (a∗

1c, a
∗
1w)xt + (b∗

1c, b
∗
1w)(|xt − 0| + xt − 0)/2

+ (b∗
2c, b

∗
2w)(|xt − 1| + xt − 1)/2 + (b∗

3c, b
∗
3w)(|xt − 2| + xt − 2)/2

+ (b∗
4c, b

∗
4w)(|xt − 3| + xt − 3)/2 + (b∗

5c, b
∗
5w)(|xt − 4| + xt − 4)/2

+ (b∗
6c, b

∗
6w)(|xt − 5| + xt − 5)/2 + (b∗

7c, b
∗
7w)(|xt − 6| + xt − 6)/2

+ (b∗
8c, b

∗
8w)(|xt − 7| + xt − 7)/2 + (b∗

9c, b
∗
9w)(|xt − 8| + xt − 8)/2

+ (b∗
10c, b

∗
10w)(|xt − 9| + xt − 9)/2

+ (b∗
11c, b

∗
11w)(|xt − 10| + xt − 10)/2.

The initial necessity model of nonlinear time-series shown as linear piecewise
model is as follows:

Y∗(xt ) = (a0c∗, a0w∗)+ (a1c∗, a1w∗)xt + (b1c∗, b1w∗)(|xt − 0| + xt − 0)/2

+ (b2c∗, b2w∗)(|xt − 1| + xt − 1)/2

+ (b3c∗, b3w∗)(|xt − 2| + xt − 2)/2

+ (b4c∗, b4w∗)(|xt − 3| + xt − 3)/2
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+ (b5c∗, b5w∗)(|xt − 4| + xt − 4)/2

+ (b6c∗, b6w∗)(|xt − 5| + xt − 5)/2

+ (b7c∗, b7w∗)(|xt − 6| + xt − 6)/2

+ (b8c∗, b8w∗)(|xt − 7| + xt − 7)/2

+ (b9c∗, b9w∗)(|xt − 8| + xt − 8)/2

+ (b10c∗, b10w∗)(|xt − 9| + xt − 9)/2

+ (b11c∗, b11w∗)(|xt − 10| + xt − 10)/2.

Let M = 1000, δ = 0.0000001, ϕ = 0.00000001, C = 7. Solving this program
by LINDO, we also try to test the case of nonlinear time-series shown as a quadratic
piecewise model.

4.2. RESULTS AND DISCUSSIONS

4.2.1. Results

Depicts the running results of the possibility and necessity analysis. The following
piecewise models are subsequently obtained.

(a) Nonlinear time-series shown as linear piecewise model

(i) Possibility

Y ∗(xt ) = 0.02445 − 0.0026xt + 0.001525(|xt − 3| + xt − 3)

+ 0.0039(|xt − 5| + xt − 5) − 0.0042(|xt − 6| + xt − 6)

± [0.00155 + 0.00025(|xt − 3| + xt − 3)]

(average width: 0.002186 m/s; i.e., total vagueness is 0.01881 m/s)
(ii) Necessity

Y∗(xt ) = 0.0259 − 0.0055xt + 0.00195(|xt − 1| + xt − 1)

+ 0.0006(|xt − 3| + xt − 3) + 0.005409375(|xt − 5| + xt − 5)

− 0.0049875(|xt − 6| + xt − 6)

− 0.00233125(|xt − 7| + xt − 7) + 0.002275(|xt − 8| + xt − 8)

± [0.0001 + 0.00008125(|xt − 5| + xt − 5)]

(average width: 0.000211 m/s; i.e., total vagueness is 0.00231875 m/s)
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Table I. The comparison of observed output with predicted output by linear piecewise model.

Sample observed output Predicted output (m/s)

(time, s) (raw data, m/s) possibility (3 change-points) necessity (6 change-points)

0 [0.0248, 0.0260] [0.02290, 0.02600] [0.02580, 0.02600]

1 [0.0203, 0.0210] [0.02030, 0.03400] [0.02030, 0.02050]

2 [0.0185, 0.0208] [0.01770, 0.02080] [0.01870, 0.01890]

3 [0.0161, 0.0173] [0.01510, 0.01820] [0.01710, 0.01730]

4 [0.0167, 0.0189] [0.01505, 0.01915] [0.01670, 0.01690]

5 [0.0160, 0.0165] [0.01500, 0.02010] [0.01630, 0.01650]

6 [0.0235, 0.0270] [0.02275, 0.02885] [0.02664, 0.02700]

7 [0.0270, 0.0282] [0.02210, 0.02920] [0.02700, 0.02753]

8 [0.0227, 0.0245] [0.02145, 0.02955] [0.02270, 0.02339]

9 [0.0225, 0.0238] [0.02080, 0.02990] [0.02295, 0.02380]

10 [0.0232, 0.0243] [0.02015, 0.03025] [0.02320, 0.02421]

which all satisfies the conditions:

Y∗(xt ) ⊆ Yt ⊆ Y ∗(xt ), t = 0, 1, 2, . . . , 10.

[necessity width: 0.000211 m/s] ≤ [raw data (observation) width: 0.001545 m/s] ≤
[possibility width: 0.002186 m/s]. Similarity index = 0.71 (raw data width/possi-
bility width).

The comparison of observed output with predicted output by the linear piece-
wise model is shown as Table I, Figures 2 and 3. The linear piecewise model detects
three change-points in possibility analysis and six change-points in necessity analy-
sis.

(b) Nonlinear time-series shown as quadratic piecewise model

(i) Possibility

Y ∗(xt ) = 0.025110 − 0.003930xt + 0.000490x2
t

+ 0.003040(|xt − 5| + xt − 5) − 0.003680(|xt − 6| + xt − 6)

− 0.00223(|xt − 7| + xt − 7)± [0.001510 + 0.000040xt ]

(average width: 0.001710 m/s; i.e., total vagueness is 0.01881 m/s)
(ii) Necessity

Y∗(xt ) = 0.025050 − 0.005450xt + 0.001150x2
t

− 0.001175(|xt − 2| + xt − 2) − 0.001625(|xt − 4| + xt − 4)
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Figure 2. Possibility analysis compared with raw data by linear piecewise model (with 3
change-points: t = 3, 5, 6).

+ 0.004434(|xt − 5| + xt − 5) − 0.005875(|xt − 6| + xt − 6)

− 0.003450(|xt − 7| + xt − 7) ± 0.00025

(average width: 0.000250 m/s; i.e., total vagueness is 0.001684375 m/s)

which all satisfies the conditions:

Y∗(xt ) ⊆ Yt ⊆ Y ∗(xt ), t = 0, 1, 2, . . . , 10.

[necessity width: 0.000250 m/s] ≤ [raw data (observation) width: 0.001545 m/s] ≤
[possibility width: 0.001710 m/s]. Similarity index = 0.90 (raw data width/possi-
bility width).

The comparison of observed output with predicted output by the quadratic piece-
wise model is shown as Table II, Figures 4 and 5. The quadratic piecewise model
detects three change-points in possibility analysis and five change-points in neces-
sity analysis.
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Figure 3. Necessity analysis compared with raw data by linear piecewise model (with 6
change-points: t = 1, 3, 5, 6, 7, 8).

Table II. The comparison of observed output with predicted output by quadratic piecewise
model.

Sample observed output Predicted output (m/s)

(time, s) (raw data, m/s) possibility (3 change-points) necessity (5 change-points)

0 [0.0248, 0.0260] [0.02360, 0.02662] [0.02480, 0.02530]

1 [0.0203, 0.0210] [0.02012, 0.02322] [0.02050, 0.02100]

2 [0.0185, 0.0208] [0.01762, 0.02080] [0.01850, 0.01900]

3 [0.0161, 0.0173] [0.01610, 0.01936] [0.01645, 0.01695]

4 [0.0167, 0.0189] [0.01556, 0.01890] [0.01670, 0.01720]

5 [0.0160, 0.0165] [0.01600, 0.01942] [0.01600, 0.01650]

6 [0.0235, 0.0270] [0.02350, 0.02700] [0.02647, 0.02697]

7 [0.0270, 0.0282] [0.02462, 0.02820] [0.02749, 0.02799]

8 [0.0227, 0.0245] [0.02226, 0.02592] [0.02390, 0.02440]

9 [0.0225, 0.0238] [0.02088, 0.02462] [0.02262, 0.02312]

10 [0.0232, 0.0243] [0.02048, 0.02430] [0.02364, 0.02414]
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Figure 4. Possibility analysis compared with raw data by quadratic piecewise model (with 3
change-points: t = 5, 6, 7).

4.2.2. Discussions

Figures 2 and 3 depict the change intervals of the possibility and necessity area
for linear piecewise model. According to Table I, Figures 2 and 3, both of the
change points in the time interval of the possibility and necessity models appear
at the same positions, time t = 3, 5, 6 s. During the time period 0 to 3 s and 6
to 10 s, the necessity analysis increases three change-points, at time t = 1, 7, 8 s
respectively, and these change-point intervals in the time-slice are included in the
observed data and possibility distribution. In the mean time, Figures 4 and 5 depict
the change intervals of the possibility and necessity area for quadratic piecewise
model. According to Table II, Figures 4 and 5, we also find the change points
in the time interval of the possibility and necessity models appear at the same
positions, time t = 5, 6, 7 s. During the time interval, the velocity fluctuation of
bursting is predicted from the change-points automatically. In the time period 0 to
5 s, the necessity increases two change-points, at time t = 2 and 4 s, and these two
change-point intervals in the time-slice are also included in the observed data and
possibility distribution.

Based on the results of objective value (total/average vagueness) and similar-
ity index from Tables I and II and Figures 2–5, we can judge that the nonlinear



FUZZY PIECEWISE REGRESSION ANALYSIS 99

Figure 5. Necessity analysis compared with raw data by quadratic piecewise model (with 5
change-points: t = 2, 4, 5, 6, 7).

piecewise model is better than the linear piecewise model (closer observation)
in possibility and necessity analysis. In this model the concept of each assum-
ing time point is a change-point except the last one is interpolation. However, C
in Equation (49) controls the number of change-points to reduce the redundant
change-points. Hence, in order to obtain an effective and parsimonious form, de-
ciding the number of change-points must depend on the observed data distribution
and the number of change-points is best minimized [13].

In the present validated example, the fuzzy piecewise regression model captures
the regeneration of bursting cycle using the automatic change-point detection to
obtain the positions of change-points, at the same time steps t = 5, 6, 7 s in
both possibility and necessity models, and it predicts the velocity fluctuation for
a short time period. The model extracts the typical velocity oscillations during
bursting. The regeneration of bursting cycle can be reconstructed and identified
from the possibility and necessity analysis of the time-series of velocity component
in the model (Figures 2–5). It also mimics a bursting cycle in a short time period
successfully. The strategy can be applied for long-term time-series prediction of
turbulence by extending the flow sampling in higher dimension with multivariate
model. The fuzzy piecewise multivariate-regression model then can be obtained.
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The system is complex and is beyond the scope of the present study. Interesting
readers may refer to [14] for the extension. It has already been shown that the
analysis can obtain global optimal rather than local optimal solution by employing
the mixed integer programming [14]. The nonlinear prediction of chaotic dynamics
in [12] provided better forecasts with local-type methods than global method. Their
restrictions are due to the constraints in the reconstruction of the complex high-
dimension system from only one velocity component measurement. However, the
fuzzy piecewise analysis is free from the restriction. It permits multivariate data
with high dimensional system and detects the change-points automatically [13]. A
multivariate example with higher dimension is demonstrated in [14].

According to the prediction results in the verified example, the practicality of
the fuzzy piecewise regression model is shown to contain the characteristics and
the trends of the relationship between velocity-change and time-series appearing in
the nonlinear types of near-wall turbulence. The proposed method, especially the
quadratic piecewise model, is appropriate and appears to be useful in searching the
change-points of nonlinear near-wall turbulence flow for predicting the turbulence
time-series automatically as well as other fuzzy environment. When increasing the
sample points, we can improve the prediction result. By decreasing the interval
of the possibility area and increasing the interval of the necessity area, a recon-
struction of the whole dynamic system is possible. However, as the sample size
increases, the number of change-points increases and the interval model become
complex. The number of change-points cannot be best minimized easily [14].

In the real world, the environment is uncertain and we must use little data
through a sensor or monitoring detection to predict situations in a short time.
Also, we must preprocess the data. Time-series analysis uses only the time-series
of observations of the variable being forecasted in order to develop a model for
predicting future values. A broad classification of some major forecasting meth-
ods is shown in the Appendix [25]. The time-series methods can be categorized
into several classes, including the traditional time-series methods, the Box–Jenkins
model, the dynamic models (i.e., Bayesian theory, Kalman filtering, chaos, etc.),
the fuzzy time-series, the state space model, the neural networks and the grey
forecasting. From our literature review, only some of the traditional time-series
methods (e.g., autoregressive models, ARMA, and NNM) [8, 9] and the chaotic
forecasting models are used for time-series analysis in the turbulent flow study [10–
12]. This study proposes an innovative approach to solve non-linear time-series of
turbulence. We also compare some existing time-series analysis methods in general
(see Table III) [26, 27].

First of all, the traditional time-series methods (i.e., moving average, expo-
nential smoothing, decomposition and growth curve methods) are based on the
theory of statistics and the parameters of the models are time-invariant. Most of
the input and output relationships of these models are nonlinear, except for the
moving average method and the additive type of decomposition model. The clas-
sic decomposition models and the Winter’s exponential method are suitable for
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Table III. Comparison of 14 time-series methods.

Model Number of Theory State Equation Time Appropriate
observations period problems

ARIMA – probability nondynamic linear short trend
Simple exponential 5–10 probability nondynamic nonlinear short stationary
smoothing
Holt’s exponential 10–15 probability nondynamic nonlinear short & trend

medium
Winter’s exponential at least 5 probability nondynamic nonlinear short & trend &

medium seasonality
Decomposition 2 cycle time probability nondynamic linear and short & trend &

nonlinear medium seasonality
Growth curve 7–10 probability nondynamic nonlinear long s-curve,

technology
forecasting

Box–Jenkins at least 50 probability nondynamic linear short trend &
seasonality

NNM – probability nondynamic nonlinear short trend &
and dynamic seasonality

Kalman filtering little conditional dynamic linear and short trend &
probability nonlinear seasonality

Deterministic chaos – differential dynamic nonlinear short nonstationary
or difference
equation

Fuzzy time-series – fuzzy relation nondynamic – short trend
(Song et al.
and Chen)
Fuzzy regression – possibility nondynamic linear and medium trend

nonlinear & long
Fuzzy piecewise – fuzzy dynamic linear and medium trend
regression with relation nonlinear & long
automatic change-
point
Neural network – gradient dynamic nonlinear medium trend &
(back-propagation) descent & long seasonality
Grey forecasting at least 4 grey theory nondynamic nonlinear short trend

and dynamic

forecasting time-series with growth trend and seasonality [28, 29]. However, the
moving average method and the Holt’s smoothing method are not suitable for sea-
sonal time-series. The theoretical foundation of the Box–Jenkins model is based
on the probabilistic distribution of statistics and the fact that the relationship be-
tween input and output is precise linear functional form [30]. It is widely used for
short term forecasting, especially for time-series with trend and seasonality [28].
The disadvantage of this model is its need of at least 50 or more historical data
required. A Nearest Neighbor Method (NNM) was developed to predict riverflow



102 Y.-H. TSENG ET AL.

by Kember et al. [9]. They applied the nonlinear dynamics into the parsimonious
three parameters NNM prediction. However, the stochastic approach is not satisfied
in turbulent flow prediction with chaotic dynamics.

For the dynamic models, Kalman filtering methods and chaotic models are the
most popular ones. The Kalman filtering method used the conditional probability
concept. The parameters will change when a new data becomes known. This means
the parameters are time-variant. Recent studies applied fuzzy set theory or neural
network to Kalman filtering [31] in prediction. On the other hand, systems which
are nonlinear, nonequilibrium, deterministic, and dynamic, incorporate random-
ness, are sensitive to initial conditions, and have strange attractors are said to be
chaotic. Deterministic chaos can provide guidance for short-term predictions under
certain circumstances when the attractors have only a few dimensions while it is
unable to make long term predictions [32]. The chaotic models can divulge a good
insight of the dynamics and are used widely in most turbulent time-series research
[10–12].

Another approach for consideration is the fuzzy time-series model. The Chen,
Song and Tseng fuzzy time-series use the theory of fuzzy relation [33–38] and their
models can be used to deal with forecasting problems in which historical data are
linguistic values. The thought behind these models is based on the fuzzy relational
equations and approximate reasoning. This fuzzy time-series idea in additional to
nonlinear chaotic concept consists of the fundamental outline of this paper. With
respect to fuzzy regression method, it emphasizes on the ambiguity and the in-
definite nature of a system, while the traditional regression analysis emphasizes
on the randomness. This method allows the relationships between the response
and the predictor variables to be ambiguous. This uncertainty relationship can
be represented by fuzzy parameters defined as fuzzy sets, or more specifically,
the fuzzy numbers [17]. Furthermore, the inferred values of the response are also
fuzzy because they are derived from fuzzy parameters. The details of this method
are provided in Sections 2 and 3 of this paper. The fuzzy piecewise regression
analysis with automatic change-point rather than traditional regression method
consists in its piecewise dynamical prediction. It applies piecewise change-point
analysis to predict the time-series dynamically. The prediction results shall rely on
the dynamic of the system. In the other prediction methods, neural networks rely on
training data exclusively to generate a forecast. The theoretical advantage of neural
networks as a forecasting tool is that the relationship does not need to be specified
in advance since the method can establish relationships through a learning process.
Also, neural networks do not require any assumption about underlying popula-
tion distribution. They are especially valuable in cases where inputs are highly
correlated, missing, or nonlinear systems [36]. The back-propagation model uses
gradient descent to come up with the best solution. The grey forecasting method
is based on the grey theory. It can be used in which only little data is collected, as
few as four observations are enough [37], to estimate the outcome of an unknown
system. And it can use a first order differential equation to characterize a system.



FUZZY PIECEWISE REGRESSION ANALYSIS 103

Therefore, only a few discrete data is sufficient to characterize such an unknown
system. The neural networks and grey forecasting are two strategies that can be
combined with other models to improve prediction in turbulent time-series model
in the future study.

Under these circumstances, the use of the fuzzy piecewise regression model to
predict the nonlinear time-series of turbulent flows with automatic change-point
detection is more satisfactory than the models in other published papers. There
are several advantages that the fuzzy piecewise regression model with automatic
change-point detection has which make it appear to be the most appropriate tool:

(i) The method can deal with the problems simply using the piecewise nonlinear
time-series regression to predict the time-series trends with complex dynam-
ics intrinsically. In fact, when the dynamics of turbulence reveals ambiguous
and uncertain observed data, the proposed fuzzy piecewise regression analysis
method can capture the instant variation by the change-points.

(ii) The method can detect the change-points of nonlinear time-series regression
automatically and is more robust than conventional fuzzy regression. The
conventional fuzzy regression is sensitive to outliers. Based on a piecewise
concept, the proposed method can deal with outliers by segmenting the data
automatically.

(iii) The required number of observations for the forecasting is less than the large
amount of observations in the other publication. It can be shown more effi-
cient in dealing with nonlinear time-series data by using the fuzzy piecewise
analysis than other methods (e.g., chaos dynamics, statistical method, autore-
gressive moving average, etc.). The proposed method is useful in piecewise
time-series forecasting.

A new scope of this research in time-series for turbulent analysis is to develop
an adjoint method composed of the dynamic chaotic theorem and fuzzy piecewise
regression in order to make long-term prediction, which can combine both the ad-
vantages of chaos theorem in short-time precise prediction and the fuzzy piecewise
regression in the long-term trend. An actual potential of using this model is the
time-series prediction of high-dimensional dynamical system.

5. Conclusions

This research uses general fuzzy piecewise regression analysis with automatic
change-point detection to predict the nonlinear time-series of near-wall turbulent
flows. Fuzzy piecewise possibility and necessity regression models are used when
the function behaves differently in different parts of the range of crisp input data.
The nonlinear prediction method performs better in the forecast than the statistical
method. In this method, the observed data can be points or intervals and the ob-
served data are nonlinear. The positions of change-points and the fuzzy regression
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possibility and necessity models can be simultaneously obtained. Based on piece-
wise characteristics and concepts, we can deal with the prediction of nonlinear sit-
uations in the near-wall turbulence time-series by using fuzzy piecewise regression
successfully. This paper also overcomes the problem in searching change-point
technique by using automatic detection.

In order to show and explain the practicality and usefulness of this model, an
example of predicting the nonlinear behavior of near-wall turbulence time-series is
taken as a validated model by subjectively taking eleven sample points of the time-
series experimental data from Figure 1 [12]. We use two forms to test this model:
(a) linear piecewise time-series and (b) quadratic piecewise time-series. According
to these results of practical applications, the proposed method is appropriate and
appears to be useful in searching the change-points of nonlinear situations of near-
wall turbulence for predicting the turbulence time-series automatically as well as
in a fuzzy environment.

Appendix

Figure A.1. The categories of forecasting models.
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