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Abstract. Large-eddy simulation (LES) is used to investigate three-
dimensional turbulent flow over a wavy boundary. An efficient immersed bound-
ary method (IBM) for simulating turbulent flows in complex geometries is pre-
sented. The method is based on a finite-volume approach on a non-staggered
Cartesian mesh and a fractional-step method. A force is applied on the body
surface through an immersed ghost-cell method. Both steady and unsteady flows
are simulated. A steady flow simulation provides not only the mean and tur-
bulence statistics but also visualization of the Görtler vortices. The simulation
shows that Görtler vortices are formed by a sequential vortex reconnection pro-
cess and broken down due to vortex separation. The unsteady oscillatory flow
displays the three-dimensional vortex formation/transport cycle which is shown
to be important for sediment transport. The turbulent structure is fully three-
dimensional and is clearly seen from the current animations.
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3.1.3 Three-dimensional structure of Görtler vortices. . . . . . . . . . . . . . . . 11

3.2 Unsteady flow simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Conclusions 19

Acknowledgments 22

References 22

1. Introduction

Three-dimensional turbulent flows over a wavy boundary are interesting because the geometrical
configuration is fairly simple but the flow pattern is complicated. The flows are subject to the
effects of alternating convex and concave curvature. Many laboratory experiments, including
steady flow (see e.g. [1, 2]) and unsteady oscillatory flow (see e.g. [3, 4]) were presented in
the past. In steady flows, it was found that a wavy surface substantially modifies flat-wall
turbulence results such as the law of the wall and turbulence production mechanism for medium-
amplitude wavy surface [1]. The presence of recirculating flow caused large fluctuations of
the shear stress and of the pressure near the wavy wall. However, most of the experimental
studies were either limited to two dimensions or a synthesis of data measured at several discrete
locations. Using large-eddy simulation (LES), Calhoun and Street [5] identified the occurrence
of Görtler vortices in the turbulent flow over wavy boundary. Görtler vortices are streamwise-
oriented coherent structures that often occur in counter-rotating pairs. Saric [6] provided an
extensive review of Görtler instability and vortices. Most previous experimental and theoretical
studies of Görtler vortices focused mainly on linear stability analysis and early transition from
laminar to turbulent flows. Development of the three-dimensional structures of the Görtler
vortices and the interaction of vortex pairs are still not clear due to the complexity of the
non-linear system [6, 7]. Furthermore, the spatial evolution of the Görtler vortex involves not
only a single instability mechanism, but also a secondary instability, initial condition, local
topography effects and open convective flow, etc. These interactions cannot be addressed
correctly by the local analysis and linear stability theory. Saric and Benmalek [8] showed that
convex curvature has an extraordinary stabilizing influence on the Görtler vortex. The nature
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of stabilization in the convex portion of the wavy wall often overcomes the destabilization of
the concave region. The formation mechanism of the Görtler vortices depends significantly
on the stabilization/destabilization effects of the convex/concave portion of the wavy surface.
Computational methods provide a tool to identify and further investigate the vortex structures
that persist in the turbulent flows over a wavy boundary.

On the other hand, the primary issues in computational fluid dynamics are accuracy,
computational efficiency and, especially, the handling of complex geometry. There are many
methods for solving incompressible flow in geometrically complex regions. A grid that is not well-
suited to the problem can lead to numerical instability. Techniques that are often employed to
handle geometry other than rectangular geometry are coordinate transformation and boundary-
fitted grids [9]. These methods have the obvious advantage that the grid conforms to the
irregular boundary, which is especially important when thin boundary layers are present. The
disadvantage of these methods is that transformations are possible only for a limited range
of geometries. To handle more complicated geometries, such as multiply connected domains
and irregular objects, one must resort to more complex transformations, a task that is quite
challenging. In some applications, finite element methods (FEM) on unstructured meshes are
used almost exclusively. Since discrete spatial elements are aligned with the irregular boundary,
important boundary effects can be well resolved. Moreover, an unstructured finite element
mesh can be easily refined where details of the solution need to be resolved. The accuracy of
the finite element method can be improved by using higher-order interpolation schemes, and
spectral accuracy can be achieved. However, generating the meshes required by the FEM is as
much an art as science and higher-order methods on an unstructured grid are expensive and
difficult. Furthermore, to solve problems with a moving boundary, one must remesh every time
the boundary moves, which can be very expensive.

The development of accurate and efficient methods that can deal with arbitrarily complex
geometry would represent a significant advance. The immersed boundary method (IBM) has
recently been demonstrated to be applicable to complex geometries while requiring significantly
less computation than competing methods without loss of accuracy [10, 11]. The method specifies
a body force in a way that simulates the presence of a body. The main advantages of the IBM are
memory and CPU savings and ease of grid generation compared to unstructured grid methods
[11], while the boundary varies with time. Bodies of almost arbitrary shape can be dealt with
by additional local refinement. The local refinement on a Cartesian grid is easily achieved [12].
Furthermore, flows with multiple bodies or islands may be computed at reasonable computational
cost. The IBM has been applied to various problems of irregular geometry, see [13, 14] for a recent
review.

In this paper, we extend the IBM through a ghost-cell method to LES of three-
dimensional turbulent flow over a wavy boundary. The systematic treatment of various boundary
conditions and validation are described in [13]. The purpose of this paper is to illustrate
the flexibility of the IBM and investigate the vortex structure in the turbulent flow over a
wavy boundary. Both steady and unsteady flows are simulated. The steady flow simulation
provides not only the mean and turbulence statistics but also visualization of the Görtler vortices
formation/destruction processes. The unsteady oscillatory flow displays the three-dimensional
vortex formation/transport cycle which is shown to be important for erosion and sediment
transport in environmental flows [15, 16].

This paper is organized as follows. Section 2 introduces the governing equations and
numerical implementation of the method. Section 3 presents the LES results of three-
dimensional turbulent flow over wavy boundary using a Cartesian grid and investigates the
formation/destruction of Görtler vortices. Finally, conclusions are drawn in section 4.
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2. Numerical method and model description

2.1. Governing equations

In order to model the flows of interest, we consider the three-dimensional, unsteady,
incompressible Navier–Stoke equations in Boussinesq form and the continuity equation. When
writing these governing equations in conservative form, we obtain

∂uj

∂xj
= 0, (1)

∂ui

∂t
+

∂

∂xj

(
uiuj + pδij − ν

∂ui

∂xj

)
= Fi, (2)

where p is the pressure and ν = µ/ρ0 is the kinematic viscosity. F i is the additional forcing and
is zero everywhere except at the immersed boundary. The Einstein convention is used to imply
summation over repeated indices.

2.2. Filtered governing equations

In LES, each flow variable f is decomposed into a large-scale (or resolved) component f and a
subfilter-scale (or unresolved) component f ′

f = f + f ′. (3)

Following the work of Zang [17], the governing equations are filtered so that they solve for
the resolved motion. The filtered equations for equations (1) and (2) become

∂uj

∂xj
= 0, (4)

∂ui

∂t
+

∂

∂xj

(
uiuj + pδij − ν

∂ui

∂xj

)
= F i − ∂τij

∂xj
. (5)

These equations govern the evolution of the large, energy-carrying, scales of motions. An
extra term which represents the effect of the unresolved, or subfilter-scale, on the resolved part
of turbulence also appears in the above equations. The term is the subfilter-scale (SFS) stress
tensor τ ij, defined as

τij = uiuj − uiuj . (6)

Here, we use a dynamic subfilter scale model with local averaging for computing the influence
of these small scales [18, 19]. This model predicts the correct asymptotic behaviour near the
boundaries and allows energy backscatter and it is used successfully for many flows.

2.3. Numerical formulation

The governing equations (4) and (5) are solved using a finite-volume technique. The method
of fractional steps (a variant of the projection method), which splits the numerical operators
and enforces continuity [20] by solving a pressure Poisson equation, is adopted. The diagonal
viscous terms in equation (5) are discretized with a Crank–Nicholson scheme and all other terms
are treated explicitly with the second-order Adams–Bashforth scheme. All spatial derivatives
are discretized using second-order central differences with the exception of the convective term.
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Figure 1. Schematic of the computational domain with an immersed boundary.
×, point in the physical domain; �, the ghost-cell domain.

That term is discretized using QUICK [21] in which the velocity components on the cell faces
are computed from the nodal values using a quadratic interpolation scheme. Further details of
the method can be found in [9, 22]. The original three-dimensional pressure Poisson equation
is solved by a multi-grid (MG) method. In the current study, a strongly implicit procedure
(SIP) preconditioned bi-conjugate gradient stabilized (Bi-CGSTAB) iterative method is used to
solve the pressure Poisson equation. This method has been shown to accelerate the convergence
significantly [13].

2.4. Ghost-cell method for an immersed boundary

The systematic treatment of various boundary conditions is detailed in [13]. We develop an
alternative approach through the use of a ghost zone. In order to represent the complex
boundary on a Cartesian grid, a boundary forcing term F i is added to the momentum equation
implicitly through ghost cells [13]. The present approach is more flexible with respect to the
incorporation of boundary conditions. The force F i is correct for the case in which the position of
the unknowns on the grid coincides with the immersed boundary; this requires the boundary to
lie on coordinate lines or surfaces, which is not possible for complex geometries. Many different
techniques have been adopted and they can be classified into two groups: (a) schemes that
spread the forcing function over the vicinity of the immersed surface, and (b) schemes that
produce a local reconstruction of the solution based on the boundary values [14]. In fact, the
two approaches are equivalent. The original Peskin [23] method, which substitutes a discrete
Dirac δ function in equation (5), belongs to the first category. The local reconstruction scheme
(b) has been proved to be more flexible [10, 11, 24] and can be designed so that it has a high
degree of accuracy. The current ghost-cell method belongs to the second category. The immersed
boundary and a ghost-cell zone are illustrated in figure 1. We express the flow variables in terms
of a polynomial and use it to evaluate the ghost point values. We use linear and quadratic
approaches which preserve the second-order accuracy of the overall numerical scheme [13]. The
scheme is equally applicable to steady and moving boundaries. A detailed description of the
numerical procedure can be found in [13].

Journal of Turbulence 5 (2004) 034 (http://jot.iop.org/) 5

http://jot.iop.org/


JoT
 5 (2004) 034

Large-eddy simulation of turbulent wavy boundary flow

(a) (b)

Figure 2. Comparison of the computational domains between the IBM (a)
and boundary-fitted (b) grids for the wavy channel flow; the domain size is
20.3 cm × 4.8 cm × 2.1 cm. The bottom wavy boundary in (a) is derived from
the boundary-fitted grid (every second grid point in each direction is shown).

It is important to note that for the forcing of Saiki and Biringen [25] and Goldstein et al
[26], the velocity at the immersed boundaries was imposed by a fictitious force. In the current
approach, the boundary condition is imposed directly. This implies that, in contrast to the
feedback forcing method, the stability limit of the current integration scheme is the same as
that without the immersed boundaries, thus making simulation of complex three-dimensional
flows practical. Higher-order extrapolation/interpolation schemes to evaluate the variables at
the ghost cells can preserve at least second-order spatial accuracy [27, 28].

In LES, the value of the turbulent viscosity νT at all fluid points, including the ghost points
shown in figure 1, is required to compute the diffusive fluxes. The computation of νT at the force
points is not straightforward in [10, 24] since the evaluation of all test-filtered quantities would
include points in the interior of the solid body. Using the ghost points inside the boundary avoids
possible errors and imposes an approximation of the proper value. For the LES that has been
carried out in this study, the error in the turbulent viscosity is found to be small, mostly because
of the fine grids required to resolve the thin bottom boundary layers around immersed bodies.
For coarser grid or atmosphere boundary layer, alternative reconstructions can be considered.

2.5. Description of the simulations

Large-eddy simulation is employed to simulate flow over a wavy boundary. The IBM described
in section 2.4 is applied and compared with the results of Zedler and Street [29]. The second-
order overall accuracy of the IBM has been validated in Tseng and Ferziger [13]. Zedler and
Street [29] used a non-orthogonal, boundary-fitted grid to compute turbulent flow over a wavy
boundary and study sediment transport in the flow. Their results have been compared with
laboratory experiments for the same geometry [5]. The calculations are three dimensional and
both steady and unsteady flows are simulated.

The bottom boundary configures straight-crested transverse ripples A sin(2πx/λ), where A
= 0.254 cm is the ripple amplitude; and λ = 5.08 cm is the ripple wavelength. The domain is
roughly the same with dimensions of 20.3 cm × 4.8 cm × 2.1 cm (L × W × H) as shown in
figure 2 for the IBM and boundary-fitted grids. A grid of 130 × 34 × 130 is used in the IBM
simulation while a grid of 130 × 34 × 98 is used in the boundary-fitted grid case. Both grid
configurations employ exponential stretching vertically. A grid size 1.5 times larger is used in
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Figure 3. Comparisons of streamwise velocity profile from the (a) IBM and (b)
boundary-fitted grid results for steady flow.

the vertical direction for the IBM case to ensure the first few grids above the wave crest to
have similar grid density as that in the boundary-fitted grid case. Grid resolution study for
this flow configuration has been tested in previous studies [15, 29, 30], showing that the current
configuration can accurately describe the turbulent flow over a wavy boundary. The steady
flow is driven by a uniform pressure gradient that yields a Reynolds number of about 2400,
based on a channel height of 2.1 cm and the mean streamwise velocity. The unsteady flow is
driven by an oscillatory pressure gradient (a simple sinusoidal function) that yields the same
Reynolds number based on the maximum velocity. The boundary conditions are periodic on all
lateral boundaries, free-slip (zero stress) at the top and no-slip at the wavy bottom. A detailed
description of this type of flow can be found in [15, 29].

3. Simulation results

3.1. Steady-flow simulations

The steady-flow configuration has been studied extensively in the past [5, 31, 32]. The flow
pattern is characterized by strong streamwise vortices, which begin on the upslope portion of
the wave and end before the next crest. For moderate slopes, the flow separates just downstream
of the crest and an unsteady recirculation zone appears. In the reattachment region, usually
just downstream of the trough, a thin accelerating boundary layer forms due to the decreasing
cross-section and lifts away from the surface forming a detached shear layer as it moves over the
crest. The flow can be divided into four regimes: an outer flow, a separated region, an attached
boundary layer on the upslope side of the wavy boundary, and a free shear layer which is located
in the lee side of the crest and is characterized by a large velocity gradient. Thus, an accurate
representation of the detailed dynamics of this flow is a challenging task for Cartesian grids.

3.1.1. Comparison with boundary-fitted grid results. For purposes of comparing with boundary-
fitted grid results, the contours of mean streamwise velocity in one wavelength of the topography
are shown. The mean streamwise velocities are compared in figures 3(a) and (b), respectively.
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Figure 4. Comparisons of mean vertical velocity contours between the (a) IBM
and (b) boundary-fitted grid results for steady flow over one wavelength of the
topography. The boundary-fitted grid result is much smoother in the up-slope
region since more grid points are used.

The contours are normalized by the maximum streamwise velocity at the top (ut). The differences
between the IBM and boundary-fitted profiles for the mean streamwise velocities are very small.
In particular, the profiles in the outer regions (beyond (y − y0) = 0.3h, y0 being the height of
bottom topography) identified by Calhoun and Street [5] are almost identical. The differences
between the average velocity profiles over the crest are small, which shows that the wavy wall
behaves as an equivalent roughness in both cases. The separation flow is characterized by the
presence of a recirculation zone developed downstream of the wave crest.

The contours of mean vertical velocity (v/ut) from the IBM and boundary-fitted grid results
are compared in figure 4. The agreement is very good. The vertical velocity is more sensitive to
the method than the streamwise velocity since its magnitude is much smaller (O(10−2)). The
recirculation is apparent in the mean vertical velocity contour as positive vertical velocities on
the downward sloping portion of the surface. The vertical velocity contours obtained with the
IBM are very similar to the contours produced by the boundary-fitted grid.

The spatial distribution of pressure on the bottom boundary between the IBM and
boundary-fitted grid results is compared in figure 5. Accurate prediction of pressure is clearly
an important aspect to evaluate the boundary behaviour of the IBM. The pressure distribution
is very sensitive to the boundary treatment and varies with the slope, wavy shape and Reynolds
numbers. The global averaged pressure P 0 is subtracted out. In the present study, all quantities
(e.g. velocity, pressure, shear stress, etc) are linearly interpolated from the nearest cells. Both
simulations show very similar pressure distribution on the bottom boundary surface. The spatial
distribution of the pressure is negative along the downslope portion on the bottom surface and
reaches its minimum in the vicinity of the wave crest. Positive pressure is observed in the
upslope portion of the wave crest. In the troughs the pressure is almost zero. These features are
also observed in previous numerical and laboratory experiments for turbulent flow over wavy
boundary [2, 32]. Quantitative comparison of spanwise-averaged pressure along the bottom
boundary in one wavelength of the topography is shown in figure 6. It is clear that both IBM
and boundary-fitted grid results predict the pressure increase on the upslope portion quite well.
The magnitude of the pressure is slightly different in the vicinity of wave trough. Overall, the
results show that the pressure on the bottom surface is well predicted using the IBM.
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Figure 5. Comparisons of the bottom pressure contours between the (a) IBM and
(b) boundary-fitted grid results for steady flow. The global averaged pressure is
subtracted out.
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Figure 6. The spanwise-averaged pressure on the bottom surface for steady flow.
—, boundary-fitted grid results; – –, IBM results.

Note that we did not perform a comparison for the computational time. The current IBM is
directly implemented on the same code used in the boundary-fitted grid case. The computational
grid is reconstructed to generate its orthogonal mesh. The main purpose of this study is to
illustrate the flexibility of the IBM (handling complex geometry accurately) and the ease of
implementation in any existing code. All metric terms and coordinate transformations are not
removed in this study although they are redundant for the IBM grid. On an orthogonal grid,
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Figure 7. Colour contours of mean flow turbulence intensity: (a) streamwise
turbulence intensity u′2, (b) spanwise turbulence intensity w′2 and (c) vertical
turbulence intensity v′2.

accurate representation for this flow is more important. In addition, this code will be optimized
to simulate moving wavy ripples in future work. Significant saving on the CPU time will be
achieved since no grid remeshing is needed and all redundant variables and transformations will
be removed.

3.1.2. Turbulent quantities and bottom shear stress. Strengths of the components of turbulence
intensity (TI) are shown in figure 7. The maximum streamwise u′2 is found above the centre
of the trough and is associated with the shear layer that detaches from the surface at the
separation point. Contours of the vertical TI show that the maxima locates slightly downstream
of the location of the maximum streamwise TI. The maximum value is about one third of the
streamwise value. Henn and Sykes [32] noted an increase in spanwise velocity fluctuations
on the upstream slopes of their wavy boundary and suggested that the precise mechanism
responsible is not yet known. Calhoun and Street [5] concluded that Görtler instability appears
to be important in the formation of the vortices and associated with the increase in spanwise
velocity fluctuation. As shown in figure 7(b), the spanwise TI shows a marked increase
on the upslope close to the wavy surface. The magnitude and location suggest a localized
production mechanism associated with the waviness of the boundary. These features confirm
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of the topography for (a) Reynolds stress −u′v′, (b) Reynolds stress −u′w′ and
(c) Reynolds stress −v′w′.

the link between the streamwise vortices and the increase of spanwise TI found by Calhoun and
Street [5].

The turbulent Reynolds stresses in one wavelength of the topography are shown in figure 8.
The maximum turbulent fluctuation −u′v′ and −u′w′ is located above the trough and is
associated with the separated shear layer. The maximum magnitude of the turbulent fluctuation
−v′w′ is much smaller than the other components of turbulent Reynolds stresses. A region with
small negative values of Reynolds stress exists close to the upslope surface and is an artifact
of the Cartesian coordinate used [5]. These values become positive while it is rotated into a
boundary-layer coordinate system.

Figure 9 shows the spatial distribution of the magnitude of the bottom boundary shear
stress. The magnitude of shear stress increases in the upslope portion of the wave crest. The
distribution is not uniform across the spanwise direction. The increase just ahead of the wave
crest is of larger magnitude than that just above the trough. The increase of shear stress is
mainly associated with the turbulent intensity increase as described above in that region.

3.1.3. Three-dimensional structure of Görtler vortices. In order to further investigate the
structure of the vortex cores, we have generated the contour animation of the second invariant
(λ2) of the velocity gradient tensor [33] in animation I. This approach is a variant of the pressure
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Figure 9. The time-averaged shear stress contours on the bottom surface for
steady flow.

minimum method. The presence of these vortices is indicative of active regions of the flow. The
vortex cores resemble those in channel flow, but they are longer, taller and have a greater angle
of inclination [5]. These vortices intensify and grow over the crest and then lose their identity
over the trough, resulting from the Görtler instability associated with boundary curvature
[5, 8, 29].

The Görtler instability occurs as the shear flow over a concave surface is subject to a
centrifugal instability. The Görtler instability and secondary instability due to the distortion of
the mean velocity field may cause transition to turbulence. However, the development process is
still not clear due to its complexity and nonlinearity. The formation mechanism of the Görtler
vortices depends significantly on the stabilization/destabilization effects of the convex/concave
portion of the wavy surface [8]. In this section, we use the λ2 method to explore the formation,
evolution and breakdown processes of Görtler vortices.

When the vortices move across the trough, passing over the inflection point, the Görtler
vortex begins to form and strengthen through the vortex reconnection process [34]. Figure 10
is taken from the the animation of λ2 = −150 (animation I) and shows the formation of such a
process over the concave surface. When convecting over the trough, the vortices B1 and B2 are
very sensitive to any instability mechanism. These vortices tend to develop slight kinks. The
velocity induced by the kinks tends to stretch and lengthen them further. The variations in the
separation and strength of the vortices cause interactions among these two vortices (B1 and B2)
and agglomerates them to produce a single larger vortex (figures 10(b) and (c)). This pairing
process results in a reconnection process [35]. The vortices B1 and B2 connect and then become
a larger vortex B1 in figure 10(c). It appears that the pairing intensifies the vortex strength.
Furthermore, the stretching of the kink induces the neighbouring vortex B3 to kink, producing
a kind of chain reaction (figure 10(d)). When these vortices move further downstream over
the concave trough, the reconnecting process is repeated and vortex B3 merges with vortex B1,
thus producing a even larger vortex which tilts when passing over the trough (figure 11). These
processes are supported by the simulation results of Saric and Benmalek [8]. They provided
examples which added an oppositely rotating vortex pair in the convex region and their results
showed significantly stabilizing effects and hence the flow is unlikely to be subjected to Görtler
instability.

A typical Görtler vortex (B1) is then clearly seen growing in figures 11(a)–(d) while it
moves further downstream over the upslope portion of the second wave crest. Calhoun and
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(a) t =55.932s (b) t =55.956s

(c) t = 55.980s (d) t = 56.004s

Figure 10. Time-evolved vortex structures plotted with the λ2 method in fully
developed steady wavy flow (isocontours of λ2 = −150). (See animation I.)

Street [5] computed the Görtler number (G = (κλ)2/(v/uλ), where κ is the curvature of the
local streamline) and determined that the inception of the vortex cores occurred at the upslope
portion of the wave crest. It is the ratio between the inertial and centrifugal effects to the viscous
effects. Regions in the flow characterized by large positive values of the Görtler number are
susceptible to the Görtler instability. These results are consistent with the increase of spanwise
turbulence intensity in figure 7.

Figures 12(a)–(d) are a series of snapshots taken from the animation of λ2 = −150 contour
(animation I) from t = 55.812 to 55.884 s. These instantaneous snapshots show a typical
breakdown process of Görtler vortex. The mechanism can be explained in terms of vortex
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(a) t = 56.028s (b) t = 56.052s

(c) t = 56.076s (d) t = 56.010s

Figure 11. Time-evolved vortex structures plotted with the λ2 method in fully
developed steady wavy flow (isocontours of λ2 = −150).

stretching. Trace the vortex A in figure 12. The vortex A strengthens and elongates on the
upslope portion of the wave crest (figure 12(a)). When the vortex A moves further downstream
over the wave crest, it loses its identity by further elongation and stretching (figure 12(b))
and then separates into two vortices (vortices A1 and A2 in figures 12(c) and (d)). The
breakdown process may result from the secondary instability that occurs when the vortex
motion begins to saturate. It is also possibly due to the dynamics of the detached shear layer
which dominates the momentum tranport in this region. The vortex strength becomes weaker
above the convex surface and the streamwise extent of the Görtler vortices is limited. These
results are consistent with previous theoretical studies that the convex surface destroys the
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(a) t = 55.812s (b) t = 55.836s

(c) t = 55.86s (d) t = 55.884s

Figure 12. Time-evolved vortex structures plotted with the λ2 method in fully
developed steady wavy flow (isocontours of λ2 = −150). (See animation I.)

vortex through the stabilizing effects. Just downstream of the wave crest, there is a region of
negative Görtler number associated with convex boundary curvature which corresponds to the
location where the vortices terminate. The location is determined by the geometry (the curvature
particularly).

We conclude that the vortex reconnection process leads to the growth of Görtler vortices.
When the flow contains perturbations that are three-dimensional, the interactions among the
vortices become more complex. These processes appear to be important in fully turbulent wavy
boundary flows. In the evolution of Görtler vortices, it is likely that more than one mechanism
(instability) is active and play roles in the development and evolution. Note that these processes
produce much more complex flow than that explained above. The three-dimensional flow is
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Figure 13. The imposed pressure gradient and the resulting spanwise-averaged
streamwise velocity u at the top. Velocity is scaled by a factor of 5.

apparently much more sensitive to small disturbances. Thus the consequence of producing a
large amount of Görtler vortices is to increase turbulent mixing and momentum/heat exchange
significantly.

3.2. Unsteady flow simulations

We also simulated the unsteady flow over a wavy boundary produced by an oscillatory pressure
gradient. As the flow speeds up to its maximum magnitude, it separates at the wave crest,
forming a recirculation zone which grows as the flow slows down. The sediment trapped by this
spanwise vortex is cast into the outer flow region when the vortex is ejected over the crest during
flow reversal. Figure 13 shows the driven pressure gradient (−∂p/∂x) and spanwise-averaged
velocity u at the top as a function of time. T is the time period imposed by the oscillatory
pressure gradient. The time t = 0 corresponds to the maximum negative pressure gradient. The
spanwise-averaged streamwise velocity (u) in the outer layer has the same form as the driven
pressure gradient (a simple sinusoidal function). The flow reaches a balance between the local
acceleration and the driving pressure gradient in the outer layer (∂u/∂t = ∂p/∂x) although the
influence of topography locally causes accelerations and decelerations near the bottom boundary.
The relation between the driven pressure gradient and the spanwise-averaged streamwise velocity
at the top can be obtained analytically [15].

Qualitative comparisons between the IBM approach and boundary-fitted grid results of
the spanwise-averaged streamwise velocity at two time steps are given in figure 14. Vertical
profiles at five locations in one wavelength of the topography are shown. These velocity profiles
are phase-averaged over 10 oscillation cycles to obtain stable statistics. Sample taking starts
after the flow reaches an oscillatory steady state. The mean profiles show good agreement with
boundary-fitted simulations. Some other comparisons can be found in [13].
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Figure 14. Comparison of streamwise velocity at different time steps: (a) t/T =
0.5 and (b) t/T = 1. T is the time period imposed by the oscillatory pressure
gradient. The arrow at the top denotes 0.0002 m2 s−2. ◦ , boundary-fitted grid
result; and ∗, denotes the IBM result.

The two-dimensional spanwise- and phased-averaged vorticity for an oscillatory cycle are
shown in figure 15. The two-dimensional oscillatory flow pattern has been shown to be an
efficient mechanism for sediment transport [15]. As shown in figure 13, the flow obtains a
balance between the local acceleration and the driving pressure gradient in the outer flow.
When the flow speeds up to its maximum magnitude (t/T = 0.25) in figure 15, a thin spanwise
vortex can be observed in the boundary layer. A small recirculation zone forms just before
the pressure gradient has attained its maximum value (t/T = 0.5) and the vorticity magnitude
reaches its maxima. Recirculation zones appear behind the wave crests but are confined to
the few grid points at the bottom. These are similar to vortices obtained with boundary-fitted
grids [29].

The boundary layer thickens on the lee side as the recirculation zone grows. The strong
upward vertical velocities associated with the recirculation zone cause the structure to grow
in vertical extent. As the flow slows down due to the adverse pressure gradient, spanwise
vortices form and are lifted off the bottom to roughly the height of the wave crests. The vortex
formation/transport process is then repeated as the flow reverses. These results are consistent
with the finding of many previous studies [3, 4], in which the development of the spanwise
vorticity is very similar and scales with the wave dimension. A more detailed discussion of the
sediment transport process subject to these vortex dynamics can be found in [15].

Figure 16 presents the vortex formation/transport process by showing the vortex cores at
different time steps from animation II. The formation cycle occurs twice per period, once on either
side of a wave trough. From the animation, it can be clearly seen that the cycle starts as the flow
accelerates (t/T = 0.25) and forms the recirculation zone in the lee side of the crest. The vortex
structures are generated by boundary layer separation and the growth of three-dimensional
disturbances [36]. They are very thin, some of them extending from just downstream of the
crest to the trough in the streamwise direction. These structures are advected downstream as
the flow slows down. The boundary layer on the lee side thickens and the recirculation zone is
lifted from the bottom. The trends are consistent with the two-dimensional spanwise vorticity
description from figure 15 except that the transport is quite variable across the domain. Some
of the vortices are centred over the trough. This structure shortens in its streamwise extent
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Figure 15. The snapshots of two-dimensional spanwise vorticity for an oscillatory
cycle. t/T = 0, 1 corresponds to the phase of maximum oscillatory pressure
gradient.

and breaks up into a more complex, three-dimensional structure as the flow slows further. After
the flow switches direction (t/T = 0.5), these complex structures are lifted off the bottom and
advected over the crest (figure 16). They are stretched in the streamwise direction and lose some
of their strength as the flow accelerates in the other direction (t/T = 0.75). Then the process
repeats in the other direction. The current vortex generation and upward transport mechanism
are very similar to those discussed in [36] and the nonlinear effects appear important for the
growth of three-dimensional instability.

Figure 17 shows the two dimensional spanwise- and phase-averaged shear stress on the
bottom surface at different time steps for an oscillatory cycle. When the flow is approaching
its maximum magnitude of streamwise velocity (t/T = 0.125, 0.625), the highest shear stress
occurs on the upslope portion of the wave crests, and a low shear stress is found in the troughs.
The shear-stress distribution is similar to that in figure 9. As the flow accelerates further (t/T =
0.125−0.25, 0.625−0.75), the shear stress decreases and the magnitude of the stress is uniformly
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Figure 15. (continued).

small. The shear stress reaches its minima when the velocity has the maximum magnitude
(t/T = 0.25, 0.75). As the flow slows down towards zero and the recirculation zone intensifies
into a coherent spanwise vortex structure, the shear stress in the recirculation zone increases
(t/T = 0.375−0.5, 0.875−1). The growth of three-dimensional disturbance also enhances the
shear stress on the bottom boundary. When the pressure gradient has attained its maximum
value (t/T = 0.5, 1), the shear stress magnitude reaches its maxima. It is interesting to note
that the maximum shear stress is consistent with the maximum vorticity observed above. The
shear stress decreases on the upslopes of wave crests as the flow speeds up again, and the
phenomenon is repeated.

4. Conclusions

The aim of this study was to develop an immersed boundary method using second-order ghost-
cell reconstruction and demonstrate its applicability in LES. The computation is done on a
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(a) t/T = 0.125 (b) t/T = 0.25

(c) t/T= 0.375 (d) t/T = 0.5

Figure 16. Vortex structures plotted with the λ2 method for different flow phases
during a time period T (t/T = 0.125 to t/T = 1). t/T = 0, 1 corresponds to
the phase of maximum oscillatory pressure gradient. The vortices are localized
between two contiguous wave crests. (See animation II.)

structured orthogonal mesh. We used the approach to perform LES of three-dimensional
turbulent flow over a wavy boundary. Both steady and unsteady flows were simulated and
compared with established numerical simulations done on a boundary-fitted grid. The results
agree very well with the previous numerical results, indicating the validity and accuracy of
the present method. Many vortex structures in flows over a wavy boundary were identified
and further investigated in the current study. At high Reynolds numbers, the boundary layer
flows over a concave surface develop an alternating sequence of rolling structures under certain
conditions. They may angle to the left or right as they move downstream. The animations
clearly illustrate the formation/destruction of Görtler vortices in the steady-flow simulation and
the three-dimensional vortex formation/transport cycle in the simulation of an unsteady flow.
Further investigation is needed to use a more realistic boundary condition (e.g. log-law) for
atmospheric applications.
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(e) t/T= 0.625 (f) t/T = 75

(g) t /T = 1.875 (h) t /T = 1

Figure 16. (continued).
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Figure 17. The magnitude of the bottom shear stress for different flow phases
during a time period T (t/T = 0.125 to t/T = 1). t/T = 0, 1 corresponds to the
phase of maximum oscillatory pressure gradient.
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