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SUMMARY

An improved hybrid Cartesian/immersed boundary method is proposed based on ghost point treatment.
A second-order Taylor series expansion is used to evaluate the values at the ghost points, and an inverse
distance weighting method to interpolate the values due to its properties of preserving local extrema and
smooth reconstruction. The present method effectively eliminates numerical instabilities caused by matrix
inversion and flexibly adopts the interpolation in the vicinity of the boundary. Some typical fluid–solid
flows, including viscous flow past a circular cylinder, a sphere, two cylinders in a side-by-side arrangement,
and an array of 18 staggered cylinders, are examined. These benchmark simulations reasonably indicate
the reliability and capability of the present method. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of flow over a rigid or flexible body with complex immersed boundary is
a challenging problem in computational fluid dynamics. In the last decades, extensive attentions
have been paid to the development of efficient numerical methods to study the flow in complex
geometry and fluid–structure interaction. Usually, boundary-fitted curvilinears or unstructured grids
are employed to deal with such a problem [1–3]. However, there are some difficulties to limit the
application of the numerical methods. High storage requirements are needed on the grid generation
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for complex geometry. The computation is even more expensive and time consuming for moving
boundary problem because the mesh must be regenerated each time step to adapt the moving
boundary. In addition, large deformation of the boundary is hardly achievable since high quality
of the boundary-fitted mesh is not guaranteed.

To overcome these difficulties, some efficient non-boundary conforming methods, e.g. immersed
boundary method (IBM), have been proposed. The IBM has the advantage of easily treating complex
fluid–structure interaction problems since the governing equations are solved on a fixed Cartesian
grid. The boundary conditions are implemented by evaluating the values at the grid nodes just in
the vicinity of the immersed boundary. In the IBM, an external force field f is generated and added
to the Navier–Stokes (N–S) equations to mimic the boundary immersed in the fluid flow, i.e.

�u
�t

+ u · ∇u= −1

�
∇ p + �∇2u + f (1)

∇ · u= 0 (2)

where u is the velocity vector, � the density, p the pressure, and � the kinematic viscosity of
the fluid, respectively. The IBM originates from Peskin’s work for two-dimensional (2D) blood
flows at low Reynolds numbers [4, 5] and has been applied to various biological fluid–structure
interaction problems [6, 7]. In Peskin’s IBM, a discrete Dirac � function is introduced to spread
the boundary forcing term over a few grid nodes near the boundary where the sharp interface is
smeared to the thickness about the order of mesh width [8]. Then, Goldstein et al. [9] developed a
virtual boundary method to deal with stationary solid boundary via a feedback forcing approach.
However, the discrete Dirac � function smears the boundary surface leading to only first-order
accuracy on the boundary. Large artificial stiffness is needed to implement the no-slip boundary
condition for flow past a rigid body and greatly affects the stability of the algorithm.

Recently, some IBMs have been developed and applied to a variety of problems. A cut-cell
method, which tracks the immersed boundary as a sharp interface and reshapes the boundary cells
to fit the local geometry, was proposed [10, 11]. The computational stencils are directly modified
in the immediate vicinity of the immersed boundary using a quadratic interpolation. However, this
method encounters a difficulty that the intersections of immersed interface and Cartesian grids may
have complex topology. Then, LeVeque and Li [12] proposed an immersed interface method (IIM)
in which the external forcing field is constructed by incorporating accurate jump conditions across
the interface. This method was first applied to elliptic and Stokes equations, and then extended
to the 2D N–S equations [13]. The IIM overcomes the limitation of discrete Dirac � function
in Peskin’s IBM and can achieve second or even higher-order accuracy. Xu and Wang [14, 15]
extended the IIM to the three-dimensional (3D) problems by systematically deriving the jump
conditions of all spatial and temporal derivatives of the velocity and pressure for the 3D N–S
equations.

Fadlun et al. [16] developed a new variant of the IBM based on the idea of ‘direct forcing’ [17].
This method is called the hybrid Cartesian/immersed boundary (HCIB) approach [18]. The solid
boundary is treated as a sharp interface and the desired velocities are imposed on the grid nodes
close to the boundary surface, referred to as ‘forcing points’. By adding the forcing term to the
N–S equation, the semi-discrete form is represented as

un+1 − un

�t
=RHSn+1/2 + f n+1/2 (3)
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where RHSn+1/2 contains the convective, viscous, and pressure gradient terms. By directly im-
posing velocity condition un+1 =Vn+1 on the immersed boundary, the forcing term can be easily
evaluated as

f n+1/2 =−RHSn+1/2 + Vn+1 − un

�t
(4)

Similar to the cut-cell method, local stencil is used to reconstruct the f n+1/2 combining with
the boundary conditions. It avoids the dynamic process (such as artificial stiffness) introduced in
Peskin’s IBM or explicit derivations of jump conditions in IIM. Less computation is required in the
solver since no new term is involved, and the stability of time advancement scheme is not affected.
The HCIB approach with direct forcing is attractive in dealing with complex geometry due to its
simplicity in the boundary treatment, and therefore has been applied to various problems [16–22].
However, the boundary treatment by polynomials in the HCIB approach may cause numerical
instabilities since the matrix inversions must be solved expensively and are easily ill-conditioned
or singular [19]. Thus, the relevant improvements on the HCIB method are still desirable.

In the present study, we propose an improved HCIB method based on ghost point treatment.
In this method, the forcing points inside the body or the ghost points are adopted to impose
the boundary conditions on the immersed boundary surface. Then, a second-order Taylor series
expansion rather than polynomials is used to obtain the values at the ghost points so that the
matrix inversions are avoided. An inverse distance weighting (IDW) interpolation is employed to
select stencil nodes flexibly in the vicinity of the boundary leading to accelerating the convergence.
Further, the present method is validated using some typical fluid–solid flows.

This paper is organized as follows. The present method is described in Section 2. Then, in
Section 3, the method is applied to some typical 2D and 3D flows, including viscous flow past
a cylinder, a sphere, two cylinders in a side-by-side arrangement, and an array of 18 staggered
cylinders. Finally, concluding remarks are given in Section 4.

2. METHODOLOGY

2.1. Obtaining the values at the forcing points

How to specify the values at the forcing points in the vicinity of the immersed boundary for
accurately satisfying boundary conditions is a critical issue in the HCIB method. Here, we use the
forcing points inside the boundary, i.e. ghost points, similar to the treatment by Tseng and Ferziger
[19]. To present the boundary treatment, a typical schematic of the ghost point arrangement is
shown in Figure 1, where two nearest fluid nodes X1, X2 and a boundary node O are used to
linearly extrapolate the value at the ghost point G. The boundary node O can be chosen as the
mid-point of the boundary segment within the cell or the point on the boundary at which GO is
normal to the boundary. However, some numerical difficulties occur in the calculations [19–23].
When the boundary is close to a fluid node, the inversions for different matrices may tend to be
ill-conditioned and even become more serious for higher-order reconstruction polynomials. When
the boundary node is close to one of the fluid nodes used in the extrapolation, the absolute value
at the ghost point G may be much greater than the values of the nearby fluid nodes Xi , leading
to numerical divergence.
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Figure 1. Schematic of the points used to evaluate the variable at a ghost point G.

To overcome these difficulties, we thus propose an improved HCIB method using Taylor series
expansion to reconstruct the value at the ghost point. For neatness, we mainly discuss 2D case
here and can easily extend to 3D case. As shown in Figure 1, the value at the ghost point G can
be expressed as

�G = �O +
s∑

k=1

1

k!
(

�x
�
�x

+ �y
�
�y

)k

�O + Rs (5)

where �x = xG − xO ,�y = yG − yO , and Rs is the remainder term of the Taylor series of degree
s, defined as

Rs = 1

(s + 1)!
(

�x
�
�x

+ �y
�
�y

)s+1

�O ∼ O(�xs+1, �ys+1) (6)

The operator (�x(�/�x)+�y(�/�y)) acts on the boundary node yielding the kth-order derivative,

(
�x

�
�x

+ �y
�
�y

)k

�O =
k∑

i=0
Ci
k�x

i�yk−i �k�O

�xi�yk−i
(7)

where Ci
k is the coefficient of binomial, i.e.

Ci
k = k!

i !(k − i)!
Generally, as indicated by Ferziger and Perić [24], a second-order approximation is able to offer a
reasonable combination of accuracy, ease of use, and cost-effectiveness in numerical calculations.
Thus, a second-order Taylor expansion is used to evaluate the value of point G, and its formulation
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Figure 2. Schematic of the points used in the IDW interpolation.

with respect to node O is represented as

�G = �O + ��O

�x
�x + ��O

�y
�y + 1

2

(
�2�O

�x2
�x2 + 2

�2�O

�x�y
�x�y + �2�O

�y2
�y2

)

+O(�x3,�y3) (8)

Since the value of node O is known from accurate Dirichlet boundary conditions, the value �G can
be solved when the first- and second-order derivatives at the node O in Equation (8) are obtained
below.

2.2. Reconstruction of the derivatives

To reliably reconstruct the derivatives, the nodes for reconstruction are usually selected around
the boundary node O . Here we use the IDW interpolation to evaluate derivatives. The IDW is
a weight-averaged method proposed by Franke [25] and holds the properties of preserving local
maxima and producing smooth reconstruction. As shown in Figure 2, the formulation of the IDW
can be expressed as

�O = 1

q

n∑
m=1

wm�m (9)

wm =
(
R − hm
Rhm

)p

(10)

q =
n∑

l=1

(
R − hl
Rhl

)p

(11)

where �O represents the value at an interpolated point O , �m and wm are the value and weighting
coefficient, respectively, hm is the distance between O and mth stencil node, p is a positive real
number called the power parameter (typically p= 2), R denotes the distance from O to the most
distant stencil node used for interpolation, and n is the total number of the stencil nodes. The
power parameter p in Equation (10) ensures the weighting coefficient wm to drop off smoothly
when the distance from point O increases. Note that, when n nodes are used to interpolate, there
are actually n + 1 nodes selected in the reconstruction stencil. The additional one is only used to
define the largest distance R without contribution to the interpolated value.
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Further, as indicated by Watson and Philip [26], the derivatives at the point O can be calculated
using the IDW, e.g. the first and second derivatives,

��O

�x
= 1

q

n∑
m=1

wm
��m

�x
(12)

��O

�y
= 1

q

n∑
m=1

wm
��m

�y
(13)

�2�O

�x2
= 1

q

n∑
m=1

wm
�2�m

�x2
(14)

�2�O

�y2
= 1

q

n∑
m=1

wm
�2�m

�y2
(15)

�2�O

�x�y
= 1

q

n∑
m=1

wm
�2�m

�x�y
(16)

All the derivatives on the right-hand side of Equations (12)–(16) are calculated by the central
finite difference approximations with the values at previous time step, e.g. the first- and second-
order derivatives in the x-direction,

��i

�x
= �i+1 − �i−1

2�x
(17)

�2�i

�x2
= �i+1 − 2�i + �i−1

�x2
(18)

Based on our extensive tests, it is enough to keep the calculation accuracy to employ usually
3–4 stencil nodes in 2D case or 4–5 nodes in 3D case which are most close to point O in the
reconstruction of the derivatives.

2.3. The full expression of value at the ghost point

Substituting Equations (9) and (12)–(16) into Equation (8), we can construct the new HCIB
method based on the ghost point treatment using the Taylor series expansion and IDW interpolation
described above. The value at the ghost point is obtained by

�G = 1

q

n∑
m=1

wm�m + 1

q

(
n∑

m=1
wm

��m

�x
�x +

n∑
m=1

wm
��m

�y
�y

)

+ 1

2q

(
n∑

m=1
wm

�2�m

�x2
�x2 + 2

n∑
m=1

wm
�2�m

�x�y
�x�y +

n∑
m=1

wm
�2�m

�y2
�y2

)

+O(�x3, �y3) (19)
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Furthermore, Dirichlet boundary condition of the velocity (u=V|�b) can be specified by replacing
the first term in Equation (19):

1

q

n∑
m=1

wm�m = �|�b (20)

Then, the value at the ghost point is evaluated as

�G = �|�b + 1

q

(
n∑

m=1
wm

��m

�x
�x +

n∑
m=1

wm
��m

�y
�y

)

+ 1

2q

(
n∑

m=1
wm

�2�m

�x2
�x2 + 2

n∑
m=1

wm
�2�m

�x�y
�x�y +

n∑
m=1

wm
�2�m

�y2
�y2

)

+O(�x3, �y3) (21)

The corresponding 3D formulation can be straightly obtained from the above procedure. It is
needed to indicate that, when the boundary happens to overlap certain grid nodes, such as moving
boundary or complex geometry of the immersed body, singularities may occur in Equation (10).
In this situation, we may simply reset the weighting coefficient of the nearest stencil node to be
1 and others 0. This treatment equivalently moves the boundary node O to the nearest stencil
node. Compared with the approach proposed by Tseng and Ferziger [19], the present method can
effectively remove the relevant numerical instabilities.

2.4. The basic solver of the algorithm

A fractional-step method is employed to solve the N–S equations (1) and (2) based on an improved
projection method [27–29]. The velocity field is corrected by the pressure to satisfy the continuity
equation. The convective and viscous terms are approximated using Adams–Bashforth and Crank–
Nicholson schemes, respectively. All spatial derivatives are discretized using the second-order
central difference scheme in a staggered grid [30]. Since the velocity and pressure are defined at
different grid locations, as shown in Figure 3, the ghost points are also used in the staggered grid.
Here, the semi-discrete form can be obtained by splitting Equation (1) into four substeps:

û − un

�t
= 1

2
(3H(un) − H(un−1)) − Gpn + 1

2Re
(L(û) + L(un)) + f n+1/2 (22)

L(�n+1) = 1

�t
D(û) (23)

un+1 = û − �tG(�n+1) (24)

pn+1 = pn + �n+1 − �t

2Re
L(�n+1) (25)

where H, G, L and D represent the discrete convection, gradient, Laplace and divergence operator,
respectively, and are described as

H=−u
�

�x1
− v

�

�x2
− w

�

�x3
, G= �

�xi
, L= �2

�x21
+ �2

�x22
+ �2

�x23
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Figure 3. (a) Locations of fluid variables, where � denotes the location of U component, ◦ the location of
V component, × the location of p component and (b) staggered arrangement of the ghost points, where

� denotes the location of U component, • the location of V component.

D= �

�x1
+ �

�x2
+ �

�x3

To set the boundary condition of the velocity, i.e. u=V|�b, we have

f n+1/2 =−RHSn+1/2 + V|n+1
�b − un

�t
(26)

The forcing term f n+1/2 requires the unknowns on the grid coincide with the immersed boundary,
which may be inaccessible for the immersed bodies with complex curvilinear geometries. Usually,
there are mainly two groups of forcing treatments [19, 31, 32]. One is spreading the forcing
function over the vicinity of the immersed boundary surface [4–9], and the other producing a local
reconstruction of the solution on the boundary values [18–22, 33]. Our treatment belongs to the
second category. As indicated above, the boundary conditions u=V|�b can be reliably imposed
using Equation (21).

The Poisson equation (23) is solved by the biconjugate gradient stabilized (Bi-CGSTAB) iteration
method, which belongs to Krylov subspace methods [34, 35] with very efficient performance to
treat sparse matrices. To accelerate the convergence of the solver and maintain the stability of
the calculation, Stone’s strongly implicit procedure [36] is also used as the preconditioner of the
Bi-CGSTAB iteration.

We now summarize the full solution procedure of the present method:

(1) Detect the ghost point G and boundary node O , and select fluid nodes Xi . Then determine the
weighting coefficient of each stencil node with the IDW to evaluate the desired derivatives
at the boundary node O .

(2) Impose boundary conditions implicitly through the ghost point G by the second-order Taylor
series expansion in Equation (21), and update the values at the ghost point by the Adams–
Bashforth scheme to maintain the second-order accuracy in time.

(3) Solve Equation (22) to obtain the intermediate velocity û.
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(4) Compute the pressure correction by solving Equation (23).
(5) Update the velocity un+1 in Equation (24) and pressure pn+1 in Equation (25) by

Equation (23).

3. NUMERICAL RESULTS

To validate the accuracy of the present method, some typical flows, including viscous flow past
a circular cylinder, a sphere and multiple cylinders, are numerically simulated, and the calculated
results are discussed.

3.1. Uniform flow past a circular cylinder

Uniform flow past a circular cylinder is simulated in a rectangular domain l × h = 45D × 30D,
where D is the cylinder diameter. The computational domain and the boundary conditions at far
boundaries are shown in Figure 4. The same kind of the boundary conditions at far boundaries
is also used in the following cases. The Reynolds number is defined as Re=UD/�, where U is
the free-stream velocity, and � the kinematic viscosity. When Re is less than about 47, the flow is
steady with two symmetrical recirculating vortices behind the cylinder. When Re increases, vortex
shedding from the cylinder occurs. Here, some typical results for Re= 20 up to 160 are presented.

In the present calculation, we use three stencil nodes (i.e. total four nodes) to interpolate the
value at the ghost point. A grid resolution study is first performed to investigate the influence of
mesh widths (i.e. 0.015D, 0.03D and 0.06D) on the result. A time step is chosen as �t = 10−3 in
this case and the following cases, which has been validated to be reliable on the calculated results.

Figure 5 shows the streamlines with two symmetrical recirculating zones behind the cylinder
at Re= 40. Then, Table I exhibits the recirculation length lw and the drag coefficient CD, where
lw is the distance between two stagnation points indicated in Figure 5. Compared with these data
calculated by different mesh widths, the results can be predicted reliably when the mesh width is
0.03D. In all the cases shown later, we will use the mesh width 0.03D for the calculations. Further,
Figure 6 shows the distributions of the pressure coefficient (Cp) and skin-friction coefficient (C f )
along the cylinder surface obtained by linear extrapolation with nearest fluid nodes outside.

Figure 4. The computational domain and external boundary conditions for flow past a circular cylinder.
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Figure 5. Streamlines of flow around a cylinder at Re= 40.

Table I. The recirculation zone length lw and drag coefficient CD at Re= 40.

lw/D CD

Present study
(Mesh width= 0.06D) 2.23 1.57
(Mesh width= 0.03D) 2.24 1.58
(Mesh width= 0.015D) 2.24 1.58
Tseng and Ferziger [19] 2.21 1.53
Ye et al. [10] 2.27 1.58

To deal with the grid sensitivity, we perform an additional simulation with a finest mesh (i.e.
mesh width 0.005D) and use this result to act as an exact solution. Meanwhile, the calculations
using linear and quadratic GCIBM treatments are also performed on the same mesh widths. Here,
L∞ and L2 norms of error are calculated by

�∞ = max
i=1,N

|ui − uei |, �2 =
[
1

N

N∑
i=1

|ui − uei |2
]1/2

(27)

where N is the total number of the grid nodes used, and uei represents the solution at the finest
mesh. As shown in Figures 7 and 8, the grid convergence of U and V components predicted by
the present method exhibits that both the L∞ and L2 norms of error are consistent to second-order
accuracy, indicating that the method can achieve the second-order accuracy. Comparing with the
previous quadratic GCIBM [19], the present method is without reducing accuracy.

The convergence rates of the steady-state solution calculated by the present method and previous
GCIBM [19] are given in Figure 9. It is seen that the present HCIB method converges rapidly and
smoothly. Since the positive power parameter p of IDW interpolation can effectively smooth out
the initial errors, the present method maintains a good convergence and stability performance.
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Figure 6. Distributions of (a) the pressure coefficient Cp and (b) skin-friction coefficient C f .
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Figure 7. L∞ norm error of velocity: (a) U component and (b) V component.

To demonstrate the force behaviour, the drag and lift coefficients are defined as CD = Fx/
( 12�U

2D) and CL = Fy/(
1
2�U

2D), respectively, where Fx and Fy are the drag and lift force acting
on the cylinder, respectively. The mean drag coefficient predicted by the present method are given
in Table II and agree well with the previous results. Figure 10 shows the lift coefficient fluctuation
C ′
L (i.e. maximum deviation from the time-averaged value) and Strouhal number St , which are

also in good agreement with the data obtained by the boundary-fitted simulations.
Instantaneous vorticity contours are shown in Figure 11. Steady separation bubbles are

formed at Re= 40 behind the cylinder and alternative vortex shedding from the cylinder occurs at
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Figure 8. L2 norm error of velocity: (a) U component and (b) V component.
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Table II. Comparison of the mean drag coefficient C̄D with previous data.

Present Park et al. Lima e Silva et al. Ye et al. Tritton Tseng and Ferziger
Re results [37] [38] [10] [39] [19]
20 2.09 2.01 2.04 2.03 2.22 —
40 1.58 1.51 1.54 1.52 1.48 1.53
60 1.44 1.39 — — — —
80 1.40 1.35 1.40 1.37 1.29 —

100 1.39 1.33 1.39 — — 1.42
120 1.38 1.32 — — — —
140 1.38 1.32 — — — —
160 1.38 1.32 — — — —
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Figure 10. Lift coefficient fluctuation (C ′
L) and Strouhal number (St) versus the Reynolds number.

Re= 60 and 100. Meanwhile, the corresponding drag and lift coefficients are reasonably calculated
and shown in Figure 12 for Re= 40 and 100.

We have also performed some tests for the flow past an oscillating circular cylinder using the
present method coupled with an approach proposed by Kim and Choi [41]. In the moving boundary
case, since the velocity and pressure unknowns are only located outside the immersed body, the
positions of these unknowns are different from time to time. To avoid the difficulty in the treatment
of the change of these positions, an IBM using a non-inertial reference frame fixed to the moving
rigid body [41] is applied to the present simulation. Based on our extensive tests, e.g. the flow
past a transversely oscillating circular cylinder (not shown here), the present method can reliably
deal with the moving boundary flows.

3.2. Uniform flow past a 3D sphere

Uniform viscous flow past a 3D stationary sphere is investigated. The Reynolds number is defined
as Re=UD/� based on the free stream velocityU , the diameter of the sphere D, and the kinematic
viscosity �. According to previous studies [42, 43], flow separation behind the sphere occurs when
Re reaches 24. A vortex ring thereby attached to the sphere remains stable and axisymmetric up
to Re= 210. When 210<Re<270, the transitional regime from 2D axisymmetric to 3D unsteady
flows is observed. The flow structure becomes non-axisymmetric and the vortex ring shifts off the
plane perpendicular to the axis. When Re>270, unsteady vortex shedding occurs to form complex
3D vortex structures.

The computational domain has the size of l × w × h = 22D × 12D × 12D with both the mesh
widths 0.03D and 0.06D. In the 3D case, as shown in Figure 13, the reconstruction stencil of
IDW interpolation uses four nodes for the present calculation.

Table III shows the mean drag coefficient and some previous data obtained by IBM [16] and
boundary-fitted methods [43, 44], where the drag coefficient is defined as CD = Fx/(

1
2�U

2·�D2/4).
It is seen that our results for the mesh width 0.03D agree well with the previous data, even though
the results for the coarse mesh width 0.06D are somewhat smaller.
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Figure 11. Instantaneous vorticity contours at Re= 40, 60 and 100 (from top to bottom).

To demonstrate the vortical structures, the vortex cores based on the definition by Jeong and
Hussain [45] are shown in Figure 14 for Re= 100 and 300. The 3D vortex structure is axisymmetric
at Re= 100. With the increase of Re, e.g. Re= 300, unsteady vortex shedding occurs.

3.3. Flow past multi-cylinder

The viscous flow past multi-cylinder is further investigated to analyse the flow structures and force
behaviours. Here, we mainly consider two typical cases. One is a uniform flow past two cylinders
in a side-by-side arrangement, and the other a flow past an array of 18 cylinders in a staggered
arrangement.
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Figure 13. Schematic of the points used to evaluate the value at the ghost point in 3D case.

Table III. Comparison of the mean drag coefficient C̄D with previous data.

Re C̄D

Present study (mesh width= 0.06D) 100 1.01
300 0.60

Present study (mesh width= 0.03D) 100 1.09
300 0.66

Fadlun et al. [16] 100 1.08
Johnson and Patel [43] 100 1.10

300 0.66
Constantinescu and Squires [44] 300 0.66
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Figure 14. Instantaneous vortex cores of flow past a sphere: (a) Re= 100 and (b) Re= 300.
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Figure 15. Schematic of two cylinders in a side-by-side arrangement.

3.3.1. Two cylinders in a side-by-side arrangement. Considering a uniform flow past two cylinders
in a side-by-side arrangement shown in Figure 15, there are two typical non-dimensional parameters
to characterize this problem, i.e. the Reynolds number Re based on the diameter of cylinder D, and
the spacing between the two cylinder surfaces g∗ = g/D. A variety of flow patterns in the wake
of the side-by-side cylinder array have been found in [46–49]. When the gap spacing is larger
than one diameter of the cylinder, the flow is symmetrical with synchronous vortex streets. When
the gap is gradually decreased, asymmetric unsteady regimes occur and the flow patterns change
extensively, resulting in different vortex shedding frequencies for each cylinder. Further, when the
gap is smaller than certain distances, the flow becomes steady state with deflect flow patterns.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1189–1211
DOI: 10.1002/fld



IMPROVED HCIB METHOD FOR FLUID–SOLID FLOWS 1205

y

0 6 12 18

-4

-2

0

2

4

(a)

y

0 6 12 18

-4

-2

0

2

4

(b)

y

0 6 12 18

-4

-2

0

2

4

(c)
y

0 6 12 18

-4

-2

0

2

4

(d)

x

y

0 6 12 18

-4

-2

0

2

4

(e) (f) x

y

0 6 12 18

-4

-2

0

2

4

Figure 16. Instantaneous vorticity contours: (a) antiphase-synchronized pattern (Re= 100 and g∗ = 3); (b)
in-phase-synchronized pattern (Re= 100 and g∗ = 1.5); (c) flip-flopping pattern (Re= 100 and g∗ = 0.7);
(d) single bluff-body pattern (Re= 100 and g∗ = 0.2); (e) deflected pattern (Re= 70 and g∗ = 0.5); and

(f) steady pattern (Re= 40 and g∗ = 1).

The influence of Re and g∗ on the flow past two side-by-side circular cylinders at low Reynolds
numbers has been investigated by Kang [46] using IBM. Six typical wake patterns, i.e. antiphase-
synchronized, in-phase-synchronized, flip-flopping, deflected, single bluff body, and steady wake
patterns, have been found. Here, we use this problem to examine the performance of the present
method.

Here, as shown in Figure 15, the computational domain is 45D × 30D in the x- and y-directions.
Based on our calculations, six typical flow patterns in Figure 16 and force coefficient variations
in Figure 17, consistent with the previous results [46, 48, 50], are reproduced.

Instantaneous vorticity contours for six wake patterns are shown in Figure 16(a)–(f). There
are four corresponding distinct wake patterns for Re= 100, and g∗ = 3, 1.5, 0.7 and 0.2.
Figure 16(a)–(d) exhibits the antiphase-synchronized, in-phase synchronized, flip-flopping and sin-
gle bluff-body state, respectively. When g∗ is greater than D, the flow is symmetric and periodic,
corresponding to the in-phase and antiphase patterns in Figure 16(a) and (b). In the flip-flopping
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Figure 17. Time evolutions of the drag (two upper lines) and lift coefficients (two lower
lines) for six flow patterns: (a) antiphase-synchronized pattern (Re= 100 and g∗ = 3); (b)
in-phase-synchronized pattern (Re= 100 and g∗ = 1.5); (c) flip-flopping pattern (Re= 100
and g∗ = 0.7); (d) single bluff-body pattern (Re= 100 and g∗ = 0.2); (e) deflected pattern

(Re= 70 and g∗ = 0.5); and (f) steady pattern (Re= 40 and g∗ = 1).
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Figure 18. Schematic of flow past 18 cylinders in a staggered arrangement.
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Figure 19. Instantaneous pressure contours of flow past an array of 18 staggered
cylinders: (a) Re= 100 and (b) Re= 200.

pattern in Figure 16(c), the flow becomes unsteady and deflects to the higher-frequency cylinder
side. The force coefficients in Figure 17(c) show that both the cylinders undergo irregular drag
force. When both the cylinders are very close, e.g. g∗ = 0.2, the flow within the gap becomes
too weak to affect the global flow pattern. Therefore, the flow behaviour is similar to a single
bluff-body pattern in Figure 16(d).

The effect of Re number on the flow structures is also investigated in Figure 16(e) and (f) for
two typical flow patterns, namely deflected and steady wake patterns. Similar to the flip-flopping
pattern in Figure 16(c), the deflection of the flow in Figure 16(e) is due to the higher drag force of
one cylinder than the other. However, Re is so small that the viscous drag effectively counteracts
the inertia momentum, and the flow turns to be steady again. When Re drops to 40, the flow
becomes steady in Figure 16(f).
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Figure 20. Instantaneous vorticity contours of flow past an array of 18
cylinders: (a) Re= 100 and (b) Re= 200.

3.3.2. Array of eighteen cylinders in a staggered arrangement. To further demonstrate the per-
formance of the present method in more complex fluid–solid interactions, as shown in Figure 18,
viscous flow past an array of 18 cylinders in a regular staggered arrangement is simulated. Sim-
ilarly, two non-dimensional parameters Re=UD/� and g∗ = g/D are used to describe the flow
configuration, where g represents the distance between the centres of two neighbouring cylinders
in either x- or y-direction.

Figures 19 and 20 show the pressure and vorticity contours at Re= 100 and 200. The flow is
steady at Re= 100 and becomes unsteady with complex vortex shedding at Re= 200. It is well
known that a periodic vortex shedding for uniform flow past a single circular cylinder occurs at
Re= 100. However, steady flow pattern exists at the same Re for an array of 18 cylinders in Figures
19(a) and 20(a). Thus, unsteady vortex shedding is suppressed due to the interaction among the
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cylinders. To better understand the dynamics involved in this problem, further investigation should
be required and is beyond the scope of this study. Basically, according to the computational test
of this problem, the present method provides a possible approach to deal with the flow in multiple
bluff bodies.

4. CONCLUDING REMARKS

An improved HCIB method based on the ghost point treatment has been proposed. The second-
order Taylor series expansion is used to evaluate the values at the ghost points, and the IDW
method to interpolate the values due to its properties of preserving the local extrema and smooth
reconstruction. Compared with previous methods, the present approach eliminates numerical diffi-
culties in the matrix inversion and maintains the accuracy of the algorithm. The IDW interpolation
also provides a smooth and flexible boundary treatment to ensure the stability of the calculation.

To validate the present method, we have investigated some typical 2D and 3D flows, including
viscous flows past a circular cylinder, a sphere, two cylinders in a side-by-side arrangement, and
an array of 18 staggered cylinders. The grid resolution test indicates that overall second-order
accuracy is achieved. These benchmark simulations confirm that the present method is efficient
and reliable in dealing with fluid–solid flows.
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