
206 COMPUTING APPLICATIONS

The International Journal of High Performance Computing Applications,
Volume 22, No. 2, Summer 2008, pp. 206–218
DOI: 10.1177/1094342008090914
© 2008 SAGE Publications Los Angeles, London, New Delhi and Singapore
Figures 1–8 appear in color online: http://hpc.sagepub.com

EFFICIENT PARALLEL I/O IN
COMMUNITY ATMOSPHERE
MODEL (CAM)

Yu-Heng Tseng1

Chris Ding2

Abstract

Century-long global climate simulations at high resolutions
generate large amounts of data in a parallel architecture.
Currently, the community atmosphere model (CAM), the
atmospheric component of the NCAR community climate
system model (CCSM), uses sequential I/O which causes a
serious bottleneck for these simulations. We describe the
parallel I/O development of CAM in this paper. The parallel I/
O combines a novel remapping of 3-D arrays with the paral-
lel netCDF library as the I/O interface. Because CAM history
variables are stored in disk file in a different index order than
the one in CPU resident memory because of parallel decom-
position, an index reshuffle is done on the fly. Our strategy is
first to remap 3-D arrays from its native decomposition to z-
decomposition on a distributed architecture, and from there
write data out to disk. Because z-decomposition is consist-
ent with the last array dimension, the data transfer can occur
at maximum block sizes and, therefore, achieve maximum I/
O bandwidth. We also incorporate the recently developed
parallel netCDF library at Argonne/Northwestern as the col-
lective I/O interface, which resolves a long-standing issue
because netCDF data format is extensively used in climate
system models. Benchmark tests are performed on several
platforms using different resolutions. We test the perform-
ance of our new parallel I/O on five platforms (SP3, SP4,
SP5, Cray X1E, BlueGene/L) up to 1024 processors. More
than four realistic model resolutions are examined, e.g. EUL
T85 (~1.4°), FV-B (2° × 2.5°), FV-C (1° × 1.25°), and FV-D
(0.5° × 0.625°) resolutions. For a standard single history out-
put of CAM 3.1 FV-D resolution run (multiple 2-D and 3-D
arrays with total size 4.1 GB), our parallel I/O speeds up by
a factor of 14 on IBM SP3, compared with the existing I/O; on
IBM SP5, we achieve a factor of 9 speedup. The estimated
time for a typical century-long simulation of FV D-resolution
on IBM SP5 shows that the I/O time can be reduced from
more than 8 days (wall clock) to less than 1 day for daily out-
put. This parallel I/O is also implemented on IBM BlueGene/
L and the results are shown, whereas the existing sequential
I/O fails due to memory usage limitation.

Key words: CAM, climate modeling, index reshuffle, paral-
lel I/O, parallel netCDF

1 Introduction

High resolution century-long global climate simulations
using the NCAR community climate system model
(CCSM) have become routine practice in understanding
long term climate and provide scientific background/sup-
port for climate related policy (i.e. CCSM is the US flag-
ship model). Software design and parallel algorithms of
CCSM have been published in a special issue in the Jour-
nal of High Performance Computing and Applications
(Vol. 19, No. 3, August, 2005). These simulations gener-
ate a tremendous amount of data. Efficient I/O is a crucial
factor for such large-scale simulations on massively par-
allel machines, but CCSM currently uses a sequential I/O
scheme (gathering data onto a single processor and then
processing I/O on the single processor). This is becoming
a major bottleneck for high resolution simulations.

In this paper, we describe the details of a new parallel I/O
for the community atmosphere model (CAM), the atmos-
phere component of CCSM, to facilitate efficient and
flexible parallel I/O. Given an example of the CAM Finite
Volume version, 0.625° × 0.5° D-resolution simulation,
the standard model history output produces ~800 MB data
for each output. Assuming monthly history output (the
most common output interval for climate models), at least
960 TB data will be generated for a typical century-long
simulation. It is also one of the most CPU intensive parts
of CCSM (see User’s Manual1). In many parallel envi-
ronments, I/O operations can proceed on multiple I/O
channels through multiple processors, greatly increasing
the data transfers. The parallel I/O of CAM combines a
remapping of 3-D arrays with the existing parallel netCDF
library. The remapping from its native decomposition to z-
decomposition uses the ideas of index reshuffling (e.g. Fra-
ser 1976; Edelman, Heller, and Johnsson 1994; Ding
2001). The index reshuffle is used to achieve maximum
I/O bandwidth on a distributed architecture because z-
decomposition is consistent with the last array dimension
in disk file (Ding and He 1999; Ding 2001). Therefore, the
entire data subdomain in a processor will be transferred to
a contiguous location in the file space without any reshuf-
fling (thus achieving the maximum bandwidth). Further-
more, history variables are stored in disk file in a different

1DEPARTMENT OF ATMOSPHERIC SCIENCES, NATIONAL
TAIWAN UNIVERSITY, NO. 1, SEC. 4 ROOSEVELT RD.,
TAIPEI, 106, TAIWAN
(YHTSENG@AS.NTU.EDU.TW)
2COMPUTATIONAL RESEARCH DIVISION, LAWRENCE
BERKELEY NATIONAL LABORATORY BERKELEY, CA94720

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

207COMMUNITY ATMOSPHERE MODEL (CAM)

index order than the one in CPU resident memory due to
different parallel decompositions and dynamic cores.

The new parallel I/O strategy also incorporates the latest
parallel netCDF (PnetCDF) library developed at Argonne
National Laboratory (ANL) and Northwestern University
(Li et al. 2003). NetCDF is a simple, portable and self-
describing file format/system. PnetCDF provides an easy-
to-use interface of parallel I/O capability for netCDF data
and optimized collective I/O. The library is implemented
on top of MPI-IO, specified by the MPI-2 standard (Gropp
et al. 1996; Gropp, Lusk, and Thakur 1999). This may
resolve a long standing I/O issue because climate models
use netCDF data format extensively. The I/O bottleneck
has so far not hindered model simulations very much
because of the relatively low resolution (e.g. controlled T42
and even T85 resolution runs; these two runs represent the
spectral dynamical core with triangular spectral truncation
at 42 and 85 wavenumbers, respectively) and monthly out-
put I/O interval. However, with steadily increasing resolu-
tions and short output interval (weekly and even daily), the
demand for an efficient parallel I/O becomes urgent in the
near future (Collins et al. 2006). To the best of the authors’
knowledge, our incorporation of PnetCDF into CAM is the
first successful experience for incorporating PnetCDF in a
large-scale climate model. More model details of CCSM
and CAM can be found in the special issues in this journal
and Journal of Climate (e.g. Collins et al. 2006). We note
that besides PnetCDF, there are several general purpose
parallel file systems such as GPFS on IBM platforms, the
Lustre file system on Cray platforms, and parallel virtual
file systems (PVFS) developed at ANL (e.g. Carns et al.
2000; Prost et al. 2001).

We emphasize that this novel approach of combining
the PnetCDF interface with a generic remapping to z-
decomposition strategy can be used for a great variety of
domain decompositions to optimize parallel I/O perform-
ance. This approach is flexible and can be easily
extended to other applications. We also take advantage of
the optimized MPI-IO collective I/O in PnetCDF. In this
sense, it is a generic parallel I/O strategy to relax the sin-
gle I/O bandwidth and memory limitation using sequen-
tial I/O and provides maximum parallel I/O rate
regardless of decompositions.

We have completed the implementation of this
approach in CAM, the major component in CCSM. A
parallel I/O module is available for CAM users as a new
I/O option.2 The extension of this approach is straightfor-
ward for other components of CCSM, including the com-
munity land surface model (CLM) which uses a
complicated unstructured grid arrangement (Collins et al.
2006). Our benchmark tests on several platforms show
that this approach significantly improves the I/O per-
formance of CAM and removes I/O bottleneck. The
extensive tests use up to 1024 processors on IBM SP3.
The maximum speedup scales quasi-linearly with the
increasing domain size. A detailed performance analysis
is given later.

We note that CAM is a large code (more than 500,000
lines of Fortran) and the parallel I/O implementation
requires very substantial efforts. Therefore, the perform-
ance comparison is limited to the parallel I/O of this paper
(actual codes in operation) and the earlier sequential I/O.
This paper describes results and experience of the parallel I/
O implementation for a widely used application. Although
the parallel I/O strategy turns out to be well suited to CAM,
no claim has been made that this is the best possible strat-
egy. Our experience also indicates that a stand-alone algo-
rithm often performs differently when being integrated in a
large complex code. Software consistency also plays a sig-
nificant role affecting algorithm design.

2 Model Description and Parallelism

2.1 Model Description

CAM (the current version is 3.1) is the latest global
atmosphere model developed at the National Center for
Atmospheric Research (NCAR). A detailed model
description can be found in Collins et al. (2006), and the
design of its parallel algorithms can be found in Hack et
al. (1995). It covers the entire surface of earth using a
uniform grid in longitude and latitude. A standard T85
resolution has 256 (longitude) × 128 (latitude) grid
points, and the distance between two grid points is 1.4°
(150 km). The vertical (height) dimension has 26 layers
(see Table 1 for more details). The model solves the sim-

Table 1
Representative CAM simulations used in our performance tests.

Runs Domain size Horizontal resolution Averaged data amount

ELU T85 128 × 256 × 26 ~1.4° (150 km) 123 MB

FV B-resolution 144 × 91 × 26 2° × 2.5° 49.2 MB

FV C-resolution 288 × 181 × 26 1° × 1.25° 196 MB

FV D-resolution 576 × 361 × 26 0.5° × 0.625° 827 MB

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

208 COMPUTING APPLICATIONS

plified version of Navier–Stokes equations (primitive
equations). The dynamics of evolving states can use one
of the following three dynamic cores: Eulerian (EUL),
semi-Lagrangian (SLD), and finite-volume (FV). Differ-
ent variable arrangements are used and the array size dif-
fers for different variables, for example 2-D variables
(fields) such as precipitation and 3-D variables such as
temperature or wind velocity. The physics part goes col-
umn-wise along the vertical direction involving clouds,
radiation, etc. Other chemical tracers, such as aerosols,
can be included as well.

2.2 Parallel Decomposition and Implications
for I/O

At present, CAM uses a parallel domain decomposition
to obtain optimal performance on distributed memory
parallel processors. Groups of processors are assigned to
each subdomain. Most data fields such as velocity, tem-
perature and pressure, are 2-D or 3-D fields (sixty-one 2-
D variables and thirty-four 3-D variables for the default
CAM output). For historical reasons and vector computer
architecture optimization, the index in resident memory
is in A(ix,iz,iy) order where ix is the longitudinal direc-
tion, iy is the latitude direction and iz is the vertical
height. However, the output files use the standard index
order: A(ix,iy,iz). Thus an index swapping is always
required to process I/O in CAM.

CAM uses either a 1-D or a 2-D domain decomposition.
In 1-D domain decomposition, each subdomain is only a
subset of latitude lines while longitude and vertical dimen-
sions are entirely local. For the EUL and SLD dynamical
cores, this y-decomposition (latitude) is chosen because of
the constraint of spectral dynamics and the semi-Lagrang-
ian advection transport algorithm near the poles.

In 1-D decomposition, the iy index (latitude) is split
into different processors. However, it places relatively
severe limitation on the maximum number of horizontal
subdomains. In the FV dynamic core, either 1-D or 2-D
domain decomposition can be used. Two-dimensional
decomposition allows CAM to effectively utilize more
processors in reality, so that iz and iy can be split.

Two major issues complicate the parallel I/O in CAM:
(a) Challenges arise for multiple decompositions in CAM,
which requires multiple parallel manipulations; (b) The
index swapping could significantly slow down I/O if not
properly implemented. This is because index swapping
involves lots of data movements with very small block
sizes. If we directly move each small block from compu-
ter memory to the appropriate location in disk file space,
the overhead associated with the large number of trans-
fers is very significant.

Thus, we resolve these problems by a unique remap-
ping strategy, i.e., irrespective of computational decom-

position. Before processing I/O, the required data arrays
are remapped into a z-decomposition. From there we use
PnetCDF to write data out collectively. The remapping
also performs the index swapping between iy and iz.
Therefore, the entire data array in each processor is writ-
ten out simultaneously, reaching the maximum possible
data transfer rates.

2.3 Sequential I/O in CAM

Existing CAM uses a sequential I/O scheme (as shown in
Figure 1). First, the distributed 3-D array is collected into
a single processor, typically Processor 0. The index of
latitude and height is then swapped locally on the I/O proc-
essor. Finally, the data is written out using the netCDF file
system (Rew et al. 1997; Unidata3). It is clear that the
above steps are not scalable. The first step is limited by
single processor I/O bandwidth. Furthermore, as the reso-
lution increases to a few kilometers, the memory in a sin-
gle processor is not sufficient to hold the global 3-D field
of single variable. The I/O processor uses its local mem-
ory at the buffering stage. So a severe memory-capacity
bottleneck also occurs. These limitations are already
observed in the current CAM FV D-resolution runs and
will become much worse in even higher resolution simu-
lations (Wehner, Oliker, and Shalf 2007).

Fig. 1 The default sequential I/O strategy in CAM gath-
ers all data blocks from computing processors and
swaps (transposes) data to correct index order before
writing out to disk file.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

209COMMUNITY ATMOSPHERE MODEL (CAM)

3 Parallel I/O Strategy

3.1 Three-Dimensional Field Remapping

As explained in Section 2.2, remapping is used to resolve
multiple computational decompositions and index swap-
ping. Here we further describe details of the general rema-
pping procedure. Given a 3-D array in any decomposition,
either 1-D, 2-D or 3-D decomposition, we have written a
library of codes which can remap the distributed 3-D array
into z-decomposition on a subset of processors (“I/O staging
processors”). The staging processors could range from 1 to
P (the total number of processors used by CAM). Index
swapping is also performed simultaneously during the rem-
apping procedure. These remapping and index swapping
routines are collected in a library called ZioLib which is
available free online (Yang and Ding 2003).4

The index swapping is essentially an index reshuffle of
a global multi-dimensional array on a multi-processor dis-
tributed-memory system (Ding 2001). It involves local
index reshuffle and global data exchange. The objective is
to remap a 3-D array on processors such that data points
along a particular dimension are entirely local on the proc-
essor, and that the data access along this dimension corre-
sponds to the fastest running storage index, just as the
usual array reshuffle. We used the well-known communi-
cation algorithm of transposition of 2-D arrays on distrib-
uted memory environments (Kumar et al. 1994).

In the distributed memory architecture, the remapping
procedure implements a global all-to-all exchange of
data blocks with size (Nx, Ny/P, Nz/P), where Nx (Ny,
Nz) is the number of grid points along the ix (iy, iz) direc-
tion, and P is the total number of distributed processors.
The global exchange performs essentially a pairwise
block exchange where the local 3-D arrays on each proc-
essor are viewed as 1-D array of blocks (Bokhari 1991;
Foster and Worley 1997). This exchange involves all-to-
all communication. Each processor sends P–1 blocks out
to all other different processors and receives P–1 blocks
from all others as follows:

% All processors execute the following global
 all-to-all blocks exchange simultaneously
do m=1, P–1
 send a message to destination processor d-ID
 receive a message from source processor s-ID
enddo

The destination ID (d-ID) and source ID (s-ID) are deter-
mined by setting

d-ID=MOD(myID+m, P), s-ID=MOD(myID-m, P)

here myID is the local processor ID and the total number
of processors can be arbitrary. These sends/receives can

be implemented with MPI_sendrecv, requiring a buffer
of size Nx x (Ny/P) x (Nz/P).

Note that the algorithm assumes Ny and Nz are integer
multiples of P for optimal efficiency. In practical applica-
tions, such as CAM, Ny and Nz can be arbitrary. In the
case of Ny, Nz is not multiples of P, the algorithm remains
the same except that some holes in the final remapped
array should be squeezed out. When both Ny, Nz are not
multiples of P, some padding is required prior to the rem-
apping and the holes need to be squeezed out after rema-
pping.

PnetCDF interface facilitates an efficient parallel I/O to
access a single netCDF file (Rew et al. 1997; Li et al.
2003). We will briefly describe the PnetCDF library in the
next section. It is natural to implement PnetCDF directly
in CAM and other large-scale models. However, satisfac-
tory parallel scaling is not always observed in the real
application (e.g. Yang, Folk, and McGrath 2004a; Yang,
McGrath, and Folk 2004b). The I/O rate may not be opti-
mal depending on the array’s index order and the results
may not be consistent with the sequential I/O. On the
other hand, our remapping procedure to z-decomposition
provides an efficient and flexible parallel tool to remap
the distributed array and output data in parallel. Thus, our
new strategy is to remap all distributed fields initially. The
procedure is schematically shown in Figure 2 as the first
stage. The software uses MPI collective operations and
data structures and is directly implemented within CAM.

Given the example of CAM FV 2-D domain decomposi-
tion, the essential remapping involves the last two dimen-
sions of the 3-D array. All data along the first dimension are
entirely local to a processor. They are moved around dur-
ing the dynamical remapping as a single block. The
implementation of the above generic algorithm in CAM is
simplified so that the index reshuffle is done locally and
PnetCDF is responsible for the all-to-all communication.

3.2 Parallel netCDF (PnetCDF)

PnetCDF is an easy-to-use application programming
interface (API) for storing and retrieving netCDF files in
parallel. It is built on top of MPI-IO. PnetCDF is then used
to write the z-decomposition data to disk file as the second
stage in our implementation. Note that PnetCDF has been
directly imported in the Regional Ocean Modeling Sys-
tem (ROMS; Yang et al. 2004a, 2004b) and many other
scientific applications. Significant improvement/advan-
tage of using PnetCDF is shown using collective I/O in
ROMS when the written record size is large enough to
overcome the overhead from MPI-IO. Since the data lay-
out of the remapped array on the staging processors’
memory is the same as that on disk, only block data trans-
fer occurs during parallel I/O, achieving the maximum
efficiency in collective I/O, see Figure 2. In general, the

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

210 COMPUTING APPLICATIONS

optimal performance relies mainly on the local remapping
algorithm and on the easy-to-use PnetCDF as a collective
I/O interface. This procedure can be applied to other
large-scale applications if the output order is not contigu-
ous, such as CAM.

We take advantage of MPI-IO collective I/O within
PnetCDF for the optimal performance. The collective I/O
optimization is already implemented in PnetCDF. If the
contiguity information is missing, other optimization
information from users, such as the number, order and
record indices, is required (Li et al. 2003). Without such
information, the PnetCDF cannot collect multiple I/O
requests over a large amount of output variables and opti-
mize the I/O over a large pool of data transfers. The
index reshuffle could be taken care of inside PnetCDF
and the remapping can be eliminated by passing an
MPI_Info hint in. However, this will complicate the
implementation of PnetCDF in CAM due to different I/O
structures and will require experienced users to tune
CAM for better performance gain. The resulting per-
formance is unsatisfactory because of the small block-
sizes and many other constraints. This is also confirmed
in tests for several simple runs. Furthermore, the code
structure remains relatively simple by separating remap-
ping/index swapping and PnetCDF, which also improves
code maintenance, readability, and flexibility. We further
show that the reshuffle only takes a small portion of the
total I/O time in Section 4, and the optimized PnetCDF
collective I/O indeed dominates.

3.3 Parallel I/O Implementation in CAM

CAM is a large and complicated Fortran code containing
more than 500,000 lines. NetCDF self-description files

for the large number of fields have to be modified to
accommodate the new parallel remapping algorithms and
the use of PnetCDF. Our parallel I/O implementation
takes approximately 3000 lines of code, separated in about
20 subroutines (details are skipped here). The implementa-
tion is designed as a parallel I/O module, so that CAM
users can switch between the sequential I/O (default) and
the parallel I/O. PnetCDF is still under development, and
our parallel I/O in CAM is perhaps the first successful
experience of incorporating PnetCDF in a large-scale,
widely used climate model (and fixing a number of bugs
of the library on the way). The PnetCDF has been used
successfully in a large scale ASC/Alliances Center for
Astrophysical Thermonuclear Flashes application (FLASH
code5). We closely interacted with the developers and
pointed out quite a number of bugs which were fixed dur-
ing the course of this implementation. By incorporating
the novel remapping procedure to optimize I/O band-
width, our benchmark testing was perhaps the first to
show significant improvement of PnetCDF in real large-
scale applications.

Current Status. The implementation and benchmark
testing has been done for all three dynamic cores for his-
tory related output (EUL, SLD, FV; see Section 2), and
confirmed bit-for-bit agreement between the newly gen-
erated output and that generated by the existing CAM 3.1
sequential I/O. The code has been successfully ported to
IBM SP series (SP3, SP4 and SP5); Cray X1E; Blue-
Gene/L (BG/L) systems. We eliminate gather/scatter from
the processors and use only local arrays within them. This
significantly relaxes the memory constraint on the BG/L
system. All three dynamic cores of CAM are examined
and successfully validated.

Fig. 2 The new parallel I/O strategy writes the global field of distributed array (X,Z,Y) to a disk file in (X,Y,Z) order
using three I/O staging processes.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

211COMMUNITY ATMOSPHERE MODEL (CAM)

3.4 A Summary of the New Remapping +
PnetCDF Approach

Existing CAM 3.1 uses sequential I/O to gather all 2-D
and 3-D fields into processor 0, and writes them out from
there. Using the new approach, no such collective gather-
ing exists. Instead, efficient MPI-IO collective I/O is
performed on each processor. Therefore, not only the
I/O speed is improved, the large memory requirement
in processor 0 is also lifted. We list the major benefits
here:

• Relieve memory limitation on each processor.
• Relieve congestion on I/O server nodes.
• Write/read in large blocks (no seeks) in parallel with

maximum flexibility.
• Achieve robust and maximum block transfer rate

regardless of parallel decomposition.
• Eliminate a temporary global field from user codes

(gather/scatter/transpose).
• Improve user-friendly PnetCDF interface.

4 Performance

4.1 Performance Analysis

Here, we present the performance of CAM history I/O
using the new parallel I/O algorithm, and compare with
the existing sequential I/O using up to 1024 processors.
Five different testing platforms and their configurations
are listed briefly as follows:

1. IBM SP3 (Seaborg at LBNL/NERSC): 416 Night-
hawk (NH) II 16-way SMP nodes and Colony
Switch. Each node has two interconnect inter-
faces. Each processor is 375 MHz Power 3+ proc-
essor. GPFS file system.

2. IBM SP4 (Bluesky at NCAR): 31 32-way and 76
8-way SMP nodes and Colony Switch. Each proc-
essor is 1.3 GHz Power 4 P690 processor. GPFS
file system.

3. IBM SP5 (Bluevista at NCAR): 78 8-way SMP
nodes and IBM High Performance Switch (HPS).
Each processor is 1.9 GHz Power 5 p575 proces-
sor. GPFS file system.

4. Cray X1E at Oak Ridge National Laboratory
(ORNL): 1024 multistreaming vector processors
(MSPs). Each MSP has 2 MB of cache and a peak
rate of 18 GF. The interconnect functions as an
extension of the memory system. NFS file system.

5. BlueGene/L at ANL: 1024 dual PowerPC 440 700
MHz, 512 MB nodes. Network uses IBM Blue-
Gene Torus, Global Tree and Global Interrupt.
NFS or PVFS2 file system.

We use realistic resolution in practical CAM simulations.
The domain size, horizontal resolution and averaged out-
put data amount are listed in Table 1. These tests include
the standard spectral ELU T85 and FV B- to D-resolu-
tions which cover a large range of resolutions. The aver-
aged output data is based on 11 runs for all cases except
the highest resolution (FV D-resolution), which uses 5
runs only. This is because the output of FV D-resolution
simulation generates a large amount of data (see Table 1).
The replications of each run are reasonable with a maxi-
mum deviation of approximately 15%. Note that the cur-
rent CAM FV D-resolution was not ready for Linux
cluster. Therefore, we skipped the implementation on the
Linux cluster although it is an important type of platform
in the parallel computing community. In the benchmark
runs, we set the number of parallel I/O staging processors
to the total number of MPI-tasks if that is less than or
equal to 32. Otherwise, we set it to 32.

Figure 3 shows the average I/O bandwidth vs. total
number of processors for a standard ELU core T85 run on
IBM SP3. Comparing the I/O bandwidth, the speedup on
the IBM SP3 for the parallel I/O vs. sequential I/O is
around 4. Performance on different numbers of processors
in a MPI-task is also shown. “Thread=8” refers to 8 threads
per MPI-task, or 2 MPI-tasks per SP3 node. The use of
“thread” is a particular feature for the IBM Power system.
The number of concurrent I/O calls is associated with the
number of MPI-tasks instead of “thread.” For a comput-
ing node, increasing the number of threads will reduce the
number of MPI-tasks. Thus a 256-processors run using
“thread=4” has 64 MPI-tasks on 16 SMP nodes (i.e. IBM
SP36). The number of processors (or threads) in a MPI-
task has clear impacts on the performance, showing the
computer architecture dependency, particularly a charac-
teristic of IBM SP, which is not clear in our evaluation.
Figure 3 shows a general trend of better I/O performance as
the threads per MPI-task increase. Thread=8 or thread=16
has the best performance. The worst performance is
observed when a single thread per MPI-task is used. Also,
as expected, the performance increases (before it saturates)
when a larger number of processors are used.

Significant improvement is found in the higher reso-
lution simulation, FV D-resolution configuration (576
longitudes × 361 latitudes × 26 levels) in Table 1. The
benchmark tests use up to 1024 processors on IBM SP3
(SEABORG at NERSC). Figures 4 and 5 show the per-
formance on IBM SP3 and SP5, respectively. The I/O
performance of IBM SP4 is quite similar to the latest
SP5, thus the curves are not presented herein. For this
configuration, the history I/O speeds up by a factor of
14 (~139 MB/s vs. ~10 MB/s) on IBM SP3 and a factor
of 9 (~380 MB/s vs. ~44 MB/s) on IBM SP5. IBM SP5
has better I/O rate (about a factor of 3 faster than IBM
SP3). The two general trends still hold: the total I/O per-

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

212 COMPUTING APPLICATIONS

Fig. 3 History I/O bandwidth of parallel I/O EUL T85 resolution on IBM SP3 (16 processors per SMP node).
“Thread=8” refers to 8 threads per MPI-task, or 2 MPI-tasks per SP3 node (16 processors).

Fig. 4 History I/O bandwidth of parallel I/O for CAM 3.1 FV D-resolution (0.5°x.625°) on IBM SP3 (16 processors per
SMP node).

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

213COMMUNITY ATMOSPHERE MODEL (CAM)

formance increases (a) as the number of threads increases
while the total number of processors is fixed; and (b) as
the total number of processors increases while the
number of threads is fixed.

Overall, the parallel I/O performance at thread=1 is
generally poor (Figures 3 and 5, particularly). There is a
dramatic gap between the thread=1 and thread=2 cases
(Figures 3–5). We believe this arises from the fact that
CAM is compiled with OpenMP always turned on (along
with a number of other rather complicated settings) asso-
ciated with IBM SP architecture. Sometimes, adopting
OpenMP with thread=1 has relatively large overhead.
This could explain the large degradation of CAM parallel
I/O performance at thread=1.

Further, the thread=1 case corresponds to the case
where every CPU within a node runs an MPI-task (i.e.
pure MPI mode). Our performance tests here clearly show
the I/O rate is not satisfactory in this case. The other
extreme case is to set the number of threads to the maxi-
mum per SMP node, i.e., each SMP node is a single MPI-
task. In this case, our results show the best performance.
Ultimately, the choice of threads depends on the balance
between computational efficiency and I/O performance.

Another important advantage of parallel I/O strategy in
CAM is to relax the memory limitations resulting from
the existing sequential I/O, which uses its local memory in

the buffering stage. Many applications have data configu-
rations larger than the local memory on the I/O processor,
especially for memory-bounded hardware such as the BG/
L system. Figure 6 compares the parallel I/O performance
of CAM FV C-resolution (1° × 1.25°) run between IBM
SP5 and BG/L systems. Thread=4 is used on IBM SP5.
On both the SP5 and the BG/L systems, the bandwidth
increases as the number of processors for the new parallel
I/O algorithm is increased, while the performance satu-
rates at 128 and 64 processors, respectively. The compar-
ison shows that the bandwidth is much better on SP5
rather than BG/L. The sequential I/O on SP5 is also much
better than the parallel I/O approach on BG/L. This may
result from the optimized I/O tuning and larger memory
within each node on SP5. Note that BG/L system repre-
sents a more power-efficient alternative approach that
achieves its performance through higher concurrency
than mainstream cluster solutions. The core of BG/L sys-
tem is a SOC (system on chip) based on the low-power
PowerPC 440 embedded core, which is a standard in-
order CPU core presented in many low-power embedded
applications. The BG/L offers well-documented improve-
ments to the power efficiency for many scientific applica-
tions. However, some large-scale applications may not be
well suited for the architecture. Large-scale CAM FV C-
(or D-) resolution is an example.

Fig. 5 History I/O bandwidth of parallel I/O for CAM 3.1 FV D-resolution (0.5°x.625°) on IBM SP5 (8 processors per
SMP node).

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

214 COMPUTING APPLICATIONS

The CAM FV C-resolution simulation causes severe I/
O problems using the default sequential I/O on BG/L
system because of strict memory limitation (< 512 MB).
Therefore, no curve for sequential I/O on BG/L system is
presented in Figure 6. Our parallel I/O strategy solves the
main I/O difficulty of CAM on BG/L system. The low
bandwidth on BG/L is possibly the result of the slower
and unoptimized code path during the benchmark testing.
We found that the behavior of PnetCDF library was
unstable, and sometimes generate erroneous results on
BG/L system. Further investigation indicates that this
was possibly because of the MPI-IO implementation On
the ANL’s BG/L system, we tested the performance of
both the NFS and PVFS27 systems. The PVFS2 is an
efficient parallel file system developed by researchers at
ANL and many collaborators. Both file systems lack cer-
tain unix-like characteristics (caching and locking behav-
iors), thus treating them as a unix file system may fail
sometimes. Taking a slower and unoptimized code path
suggested by the PnetCDF development team indeed
helps for many cases, but does not solve the inconsist-
ency problem fundamentally. The same problem also
occurs on NCAR’s BG/L system which also uses NFS-
exported GFPS file system (Ghosh et al. 2006). This
problem has been reported so that IBM can rebuild their
MPI-IO with support for NFS.

Table 2 documents the standard data characteristics of
CAM FV D-resolution simulation history output. At each
real-time output, the history file includes two 1-D varia-
bles (scalar), sixty-one 2-D variables and thirty-four 3-D
variables. The size of each variable is listed in Table 2.
These data characteristics are critical for the outstanding
behavior of PnetCDF, consistent with early evaluation of
PnetCDF in ROMS. The PnetCDF outperforms the serial
netCDF when the written record is large enough to over-
come the overhead from MPI-IO (Yang et al. 2004a).

4.2 Parallel Scaling Analysis

So far we have reported the total I/O bandwidth (i.e. total
output time). The total I/O time includes the file “open/

Fig. 6 History I/O bandwidth of parallel I/O for CAM 3.1 FV 1° ×××× 1.25° C-resolution on IBM SP5 (Thread=4) and BG/L.
The existing sequential I/O fails to run on BG/L.

Table 2
Standard data characteristics of CAM
FV D-resolution simulation history output.

Variables
Number of
variables

Size

1-D variables 2 8

2-D variables 60 + 1 576 × 361 + 576 * 49

3-D variables 34 576 × 361 × 26

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

215COMMUNITY ATMOSPHERE MODEL (CAM)

close” time, reshuffle time, and disk writing time. Here
we further break down the total time spent in each proc-
ess. Note that the file “open/close” time is very small
compared with the dominant reshuffle/disk writing time,
and can be neglected. This analysis represents more real-
istic timing in a production environment. Figure 7 shows
total I/O time, data reshuffle, and disk writing time for
the total I/O processing on IBM SP5, respectively. The
disk writing time actually indicates the overall PnetCDF
performance without the remapping algorithm in CAM.
Since this remapping procedure is essentially required in
CAM to convert the data into correct output index order,
the total output time is mainly dominated by the opti-
mized collective I/O in PnetCDF when the number of
processors is large. “D” represents FV D-resolution,
while “C” represents FV C-resolution (see Table 1 for
the resolution and domain size). Note that the horizontal
resolution doubles as the alphabetical order increases. In
the realistic applications, roughly 15% of the total I/O
time is spent on the remapping procedure for FV D-reso-
lution, and the percentage further decreases with increas-
ing number of processors. Figure 7 shows that the
significant saving mainly results from the improvement
of this process. Note that log-scale is used here to
accommodate a large range of time and number of proc-
essors. In FV C-resolution run (Table 1), the disk writ-

ing time has a peak at 16 processors. This peak is
expected since IBM SP5 has 8 processors per node. For
the run with 8 processors, all communications are within
a single SMP node. No data interconnection is trans-
ferred between nodes. For the 16 processors run, the disk
writing performance degrades due to the transfer between
nodes.

It is clear that the remapping (reshuffle) process time
(crosses in Figure 7) scales well with increasing proces-
sors using the current parallel I/O algorithm. The straight
lines indicate efficient parallelization. The high effi-
ciency results from the significant reduction of local
array size with increasing processors during the local
reshuffle time. However, the behavior is slightly worse
for the disk writing process, which includes the all-to-all
communication overhead and I/O interface, consistent
with that reported in Ding (2001). The total I/O time is
mainly dominated by the disk writing time when the total
number of processors is large enough. The saturation and
slight degradation of the performance with a large
number of processors in the parallel I/O approach comes
from disk writing overhead. The remapping process time
is based on the software program while the disk writing
time may include many other factors, such as hardware
architecture, file system, communication overhead etc.
that could not be controlled by programmers.

Fig. 7 Total I/O, data reshuffle and disk writing time for the parallel I/O processing of CAM on IBM SP5. The time is
averaged using 5 runs. “D” represents FV D-resolution while “C” represents FV C-resolution (thread=2). Note that
the horizontal resolution doubles as the alphabetical order increases. The disk writing time also indicates the total I/
O time without the remapping process (collective I/O).

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

216 COMPUTING APPLICATIONS

The new parallel I/O algorithm significantly benefits
the realistic application. Even higher resolution runs
(higher than FV D-resolution) are also proposed for CAM
in the next five years (Wehner et al. 2007). The impacts of
larger data sizes and higher output frequency are signifi-
cant and will be further discussed in the next section.

4.3 Scalability and Impacts

In existing CAM, the sequential I/O processor (processor
0) gathers distributed data, transposes the global array,
and writes to a file. Compared to this method, the new
approach can speed up I/O by a factor of 14 for FV D-
resolution with respect to the single processor I/O on
IBM SP3. The speed-up relies on the 3-D domain size of
variables. Figure 8 compares the performance of sequen-
tial (represented by crosses) and parallel I/O (represented
by circles) of CAM with different output file sizes on two
different platforms. The parallel I/O cases use 128 proc-
essors with thread=4. Different output file sizes also cor-
respond to different resolutions and dynamic cores
(Table 1). The output file size is obtained by taking the
average of each standard output file based on eleven
times output. The notations in Figure 8 for SP3 represent
FV B-resolution, EUL T85 resolution, and FV D-resolu-
tion (from small to large sizes; see Table 1). The nota-
tions on Figure 8 for SP5 represent FV C- and D-
resolutions (from small to large sizes), respectively. The

results show the significant advantage of using parallel
I/O for larger data size. As the output file size (domain
size) increases, the wall clock time of model sequential
I/O increases linearly. The wall clock time is propor-
tional to the domain size; however, the wall clock time
becomes almost constant for the parallel I/O runs. Using
parallel I/O alleviates the output processing of large data
set through multiple staging processors.

A sequential I/O bottleneck will emerge soon in CAM
and CCSM related models as the history output becomes
more frequent. Giving an example of estimated time for
FV D-resolution on IBM SP5, the impacts of parallel I/O
are given in Table 3 for 256 processors (64 MPI-tasks).
IBM SP5 represents the latest development of computer
architecture. Typical realistic simulations, used to assess
the long term trend of global warming, need to spin up
for hundreds of years (Collins et al. 2006). We present
the estimated time of weekly, daily and 3-hourly interval
output for a century (a hundred years) run in Table 3.
Only a small fraction of the total running time (1%) is
used in the I/O with weekly data output for a typical 100-
years simulation of FV D-resolution on IBM SP5. The
sequential I/O causes no bottleneck problem in the over-
all simulation. However, comparing the parallel I/O strat-
egy with the existing sequential I/O for daily output, the
estimated time for a typical 100-year simulation shows
that the I/O time can be reduced from more than 8 days
(wall clock) to less than 1 day. When the output interval

Fig. 8 Performance comparison of sequential and parallel I/O in CAM with different output file sizes (i.e. different
resolution). Here IBM SP3 is at NERSC and IBM SP5 is at NCAR. 128 processors are used.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

217COMMUNITY ATMOSPHERE MODEL (CAM)

is further reduced to 3 hours, the I/O time will take more
than a month for the data output (about 21% total running
time) while it takes only 3 days using parallel I/O
approach.

5 Concluding Remarks

In this paper, we have described an efficient approach to
solving the I/O bottleneck problem and analyzed its per-
formance and timing in large-scale CAM. This generic
approach uses the remapping to z-decomposition and
PnetCDF for the file system, and has been implemented in
the CAM climate model. The performance improvement
is systematically studied on several different platforms.
We also show the scalability and significant impacts for
the next generation CAM model. This approach can be
easily extended to other large-scale models using sequen-
tial I/O to handle large data sets. The speedup is scaled
with the domain size because of the constraint of local
memory and architecture. The parallel I/O significantly
improves the I/O performance because of better local
remapping processes. ON IBM SP, the new parallel I/O
speeds up the history output by a factor of 9–14. For the
practical impact, the estimated I/O time for a century sim-
ulation of FV core, D-resolution on IBM SP5 shows that
the I/O time can be reduced from more than 8 days (wall
clock) to less than 1 day for daily output. This parallel I/O
also facilitates the porting of CAM to BG/L system, on
which the existing sequential I/O fails to work because of
memory usage limitations.

The scaling analysis shows that we can significantly
improve the reshuffle time using an efficient parallel strat-
egy in CAM. However, the improvement of disk writing
time, which relies on the hardware architecture and design,
is not remarkable. The optimal I/O performance also
depends on the domain size and domain decomposition. It
was found that ~64 MPI-tasks is the best choice for CAM
FV D-resolution, and this suggests the use of dedicated
parallel nodes for I/O. Future work will include the port-
ing to more platforms (such as Linux clusters and Cray
XT4), and completed software development for the opti-
mal I/O in CCSM.

Acknowledgments

This work was supported by a DOE SciDAC climate
project and partially by the NERSC Program. The first
author also acknowledges the support from the National
Science Council, Taiwan. We thank the NCAR CAM
team, especially Mariana Vertenstein for collaboration. We
thank the PnetCDF team, especially Jian Li of NWU and
Rob Ross of ANL, for answering a large number of ques-
tions and the quick fixing of many bugs. We thank Pat
Worley of ORNL for CAM chunking related issues and Art
Mirin of LLNL for CAM FV core related issues. We thank
John Tannahill of LLNL for PnetCDF performance discus-
sions. Woo-sun Yang implemented the ZioLib from which
we adapted the remapping codes. The computational sup-
port at NERSC, NCAR and ANL is acknowledged.

Author Biographies

Yu-heng Tseng is an assistant professor at the Depart-
ment of Atmospheric Sciences, National Taiwan Univer-
sity, Taiwan. He received his Ph.D. on the development
of immersed boundary method for environmental flows
from Stanford University. After his Ph.D., he worked as
a post-doctoral fellow at the Department of Mechanical
Engineering at Johns Hopkins University on the large-
eddy simulation of atmospheric boundary layer. He spent
two years at the Computational Research Division, Law-
rence Berkeley National Laboratory on the parallel I/O
implementation for a community atmosphere model. His
primary expertise is high performance computing for
environmental flows and computational fluid dynamics.
His recent research includes high-order numerical algo-
rithm development and high-performance coastal and
basin-scale ocean/atmospheric modeling, among others.

Chris Ding is a professor in the Department of Computer
Science and Engineering, University of Texas at Arlington.
He was a staff computer scientist at the Lawrence Berkeley
National Laboratory from 1996. He earned a Ph.D. from
Columbia University on building a parallel processor
using Intel 80286s and commodity FPUs (Science, cover

Table 3
Estimated time for a century-long simulation of FV D-resolution on IBM SP5 (assuming weekly,
daily and 3-hourly standard output).

128 Processors
CAM 3.1 (sequential I/O) CAM 3.1 (parallel I/O)

Total (days) Sequential I/O (days) Total (days) Parallel I/O (days)

Weekly output 126.5 1.2 125.4 0.1

Daily output 133.7 8.4 126.1 0.8

3-Hourly output 159.0 33.7 128.8 3.5

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

218 COMPUTING APPLICATIONS

page, August 1988). After his Ph.D., he worked for 6
years at the California Institute of Technology, on Caltech
hypercubes with applications ranging from materials sci-
ence (1990, Nature 344: 485) to computational biology.
He spent 3 years at the Jet Propulsion Laboratory on
atmospheric data assimilation (SIAM News, front page,
October 1996) and parallel computing algorithms. His
recent research includes algorithmic R&D for climate
models, bioinformatics, and data mining. Present address:
Department of Computer Science and Engineering, Uni-
versity of Texas at Arlington, Nedderman Hall, 416 Yates
St., Arlington.

Notes
1 http://www.ccsm.ucar.edu/models/ccsm3.0/ccsm/

2 http://hpcrd.lbl.gov/~yhtseng/research/parallel_io

3 Unidata, netCDF, http://my.unidata.ucar.edu/content/software/
netcdf/index.html

4 http://crd.lbl.gov/~cding/acpi/ZioLib/

5 http://flash.uchicago.edu

6 http://www.nersc.gov/nusers/systems/SP/

7 http://www.pvfs.org

References

Bokhari, S. H. (1991). Complete exchange on the Intel iPSC-
860 hypercube, Technical Report 91-4, ICASE.

Carns, P. H., Ligon, W. B. III, Ross, R. B., and Thakur, R.
(2000). PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and Con-
ference, Atlanta, GA, October 2000, pp. 317–327.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa,
J. R., Williamson, D. L., Briegleb, B. P. et al. (2006). The
formation and atmospheric simulation of the Community
Atmosphere Model: CAM3, J. Climate 19: 2144–2161.

Ding, C. (2001). An optimal index reshuffle algorithm for mul-
tidimensional arrays and its applications for parallel archi-
tectures, IEEE Trans. Parallel Distrib. Syst. 12: 306–315.

Ding, C. and He, Y. (1999). Data organization and I/O in a par-
allel ocean circulation Model. In Proceedings of SC’1999,
Nov.

Edelman, A., Heller, S., and Johnsson, S. L. (1994). Index
transformation algorithms in a linear algebra framework,
IEEE Trans. Parallel Distrib. Syst. 5: 1302–1309.

Foster, I. T. and Worley, P. H. (1997). Parallel algorithms for
the spectral transform method, SIAM J. Sci. Stat. Comput.
18: 806–837.

Fox, G. C., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and
Walker, D. (1988). Solving problems on concurrent multi-
processors, Prentice-Hall.

Fraser, D. (1976). Array permutation by index-digit permuta-
tion, J. Assoc. Comp. Mach. 22: 298–308.

Ghosh, S., Loft, R., Tseng, Y. H., Ding, C., and Wehner, M.
(2006). Computational and I/O performance study of FV
CAM in Bluegene/L and Pwr5 system. In ScicomP12,
July 18–21, Boulder, Colorado.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high
performance, portable implementation of the MPI Mes-
sage-Passing Interface standard, Parallel Comput. 22:
789–828.

Gropp, W., Lusk, E., and Thakur, R. (1999). Using MPI-2:
Advanced features of the Message Passing Interface,
Cambridge, MA: MIT Press.

Hack, J. J., Rosinski, J. M., Williamson, D. L., Boville, B. A.,
and Truesdale, J. E. (1995). Computational design of the
NCAR community climate model, Parallel Comput. 21:
1545–1569.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994).
Introduction to Parallel Computing, Redwood City: The
Benjamin/Cummings Publishing Company, Inc.

Li, J., Liao, W. K., Choudhary, A., Ross, R., Thakur, R., Gropp,
W., Latham, R., Siegel, A. et al. (2003). Parallel netCDF:
a high-performance scientific I/O interface. In Proceed-
ings of SC’2003.

Prost, J. P., Treumann, R., Hedges, R., Jia, B., and Koniges, A.
(2001). MPI-IO/GPFS, an optimized implementation of
MPI-IO on top of GPFS. In Proceedings of SC’2001.

Rew, R., Davis, G., Emmerson, S., and Davies, H. (1997).
NetCDF user’s guide for C, Unidata Program Center.
http://www.unidata.ucar.edu/packages/netcdf/guidec/

Wehner, M., Oliker, L., and Shalf, J. (2007). Towards ultra-
high resolution models of climate and weather (submitted
to International Journal of High Performance Computing
Applications).

Yang, M., Folk, M., and McGrath, R. E. (2004a). Investigation
of parallel netCDF with ROMS, May 4, http://www.hdf-
group.uiuc.edu/HDF5/projects/archive/WRF-ROMS/

Yang, M., McGrath, R. E., and Folk, M. (2004b) Performance
study of parallel netCDF in ROMS, August 27, http://
www.hdfgroup.uiuc.edu/HDF5/projects/archive/WRF-
ROMS/

Yang, W. S. and Ding, C. H. Q. (2003). ZioLib: a parallel I/O
library, LBNL Tech. Report, LBNL-53521.

 © 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at NATIONAL TAIWAN UNIV LIB on July 20, 2008 http://hpc.sagepub.comDownloaded from

http://hpc.sagepub.com

