
Improving the Scalability of the Ocean Barotropic Solver
in the Community Earth System Model

Yong Hu†, Xiaomeng Huang†, Allison H. Baker¶,
Yu-heng Tseng*, Frank O. Bryan*, John M. Dennis¶, Guangwen Yang†

† Center for Earth System Science *Climate and Global Dynamics Division
Tsinghua University, 100084, and ¶Computational and Information Systems Laboratory

Joint Center for Global Change Studies National Center for Atmospheric Research
Beijing, 100875, China Boulder,CO. USA

{huyong11,hxm,ygw}@tsinghua.edu.cn {abaker,ytseng,bryan,dennis}@ucar.edu

ABSTRACT
High-resolution climate simulations are increasingly in de-
mand and require tremendous computing resources. In the
Community Earth System Model (CESM), the Parallel Ocean
Model (POP) is computationally expensive for high-resolution
grids (e.g., 0.1◦) and is frequently the least scalable com-
ponent of CESM for certain production simulations. In
particular, the modified Preconditioned Conjugate Gradi-
ent (PCG), used to solve the elliptic system of equations in
the barotropic mode, scales poorly at the high core counts,
which is problematic for high-resolution simulations. In
this work, we demonstrate that the communication costs
in the barotropic solver occupy an increasing portion of
the total POP execution time as core counts are increased.
To mitigate this problem, we implement a preconditioned
Chebyshev-type iterative method in POP (called P-CSI),
which requires far fewer global reductions than PCG. We
also develop an effective block preconditioner based on the
Error Vector Propagation Method to attain a competitive
convergence rate for P-CSI. We demonstrate that the im-
proved scalability of P-CSI results in a 5.2x speedup of the
barotropic mode in high-resolution POP on 16,875 cores,
which yields a 1.7x speedup of the overall POP simulation.
Further, we ensure that the new solver produces an ocean cli-
mate consistent with the original one via an ensemble-based
statistical method.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Earth and
atmospheric sciences; D.1.3 [Programming Techniques]:
Parallel Programming

Keywords
parallel computing, linear solver, ocean modeling

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807596

1. INTRODUCTION
High-resolution global climate models have become in-

creasingly important in recent years as a means for under-
standing climate variability and projecting future climate
change. The Community Earth System Model (CESM),
whose development is centered at the National Center for
Atmospheric Research (NCAR), is one of the most widely
used global climate models, and its climate projections are a
key component in the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) [35].

CESM is a fully-coupled climate system model, including
atmosphere, ocean, sea-ice and land components. In par-
ticular, the ocean component is required to represent pro-
cesses across a broad range of spatial and temporal scales
relevant to climate science. Ocean mesoscale eddies have
spatial scales of O(10 - 100 km), one to two orders of mag-
nitude smaller than the dynamically analogous weather sys-
tems in the atmosphere. The adjustment time scale for the
deep ocean is many centuries up to a few millennia, again or-
ders of magnitude longer than the corresponding timescales
in the atmosphere. The computational burden of a global
eddy-resolving ocean climate model [6, 25, 17] is thus in-
creased over that for an atmosphere model by the demand
for finer spatial resolution and longer integration times.

Moreover, climate model simulations are often run for
decades or even centuries, but these long-term simulations
are typically too computationally expensive to run at high-
resolution. For example, most CESM simulations in IPCC
AR5 are carried out with a nominal 1◦ ocean and a 1◦ to
2◦ atmosphere model. Recent increases in both supercom-
puting resources and high-resolution satellite observations
have motivated efforts to improve the parallel performance
of high-resolution climate models so that they can be run
more routinely (and for less cost).

The Parallel Ocean Model (POP) component of CESM
solves the three-dimensional primitive equations with hy-
drostatic and Boussinesq approximations [34] and divides
the time integration into two parts: the baroclinic and the
barotropic modes. The baroclinic mode describes the three-
dimensional dynamic and thermodynamics processes, and
the barotropic mode solves the vertically-integrated momen-
tum and continuity equations in two dimensions. The im-
plicit free-surface method is a common choice in barotropic
mode in ocean models because it allows a large time step
to efficiently compute the fast gravity mode. However, this

method requires solving a large elliptic system of equations,
which scales poorly in POP. In fact, the poor scaling perfor-
mance of the barotropic solver in POP, which is dominated
by the communication overhead [41], is well known, and its
optimization will benefit the entire CESM model [11].

The currently recommended linear solver for the barotropic
mode in CESM POP is the Chronopoulos-Gear (ChronGear)
method [9], a modified Preconditioned Conjugate Gradi-
ent method (PCG), combined with a diagonal precondi-
tioner. The required global reduction in the ChronGear
method does not scale well and causes a bottleneck for high-
resolution simulations. To improve the scaling of POP, and,
therefore CESM, we focus on optimizing the barotropic solver
by eliminating global reductions and developing a more ef-
fective preconditioner. In particular, we make the following
contributions:

• We develop a new block parallel preconditioner based
on the Error Vector Propagation (EVP) method [31]
designed to improve solver convergence in the POP
barotropic mode.

• We add a preconditioning interface to the Classical
Stiefel Iteration (CSI) solver explored in [20] and im-
plement the resulting preconditioned CSI (P-CSI) solver
and new EVP block preconditioner in CESM1.2.0 POP.

• We demonstrate an improvement in convergence rate
for both ChronGear and P-CSI when using block EVP.

• We obtain a 5.2x speedup of the barotropic mode in
high-resolution POP due to the improved scalability
of P-CSI with block EVP preconditioning, greatly im-
proving the scalability of POP (and ultimately CESM)
at large core counts.

• We develop and apply an ensemble-based statistical
method to evaluate the impact of changing the linear
solver in POP and ensure that a consistent ocean cli-
mate is produced.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses POP’s barotropic solver and its scalabil-
ity. Sections 3 and 4 detail the design of P-CSI for POP
and the development of the block EVP preconditioner. Sec-
tion 5 compares the scalability of the ChronGear and P-CSI
solvers. Section 6 verifies the new P-CSI solver using the en-
semble based statistical method. Finally, related work and
conclusions are presented in Sections 7 and 8, respectively.

2. BAROTROPIC SOLVER
The most time-consuming portion of the barotropic simu-

lation is the solution of the elliptic system for the sea surface
height (SSH) due to the implicit free-surface algorithm [21].
The implicit elliptic equations for SSH in POP can be ex-
pressed as follows:

[∇ ·H∇− φ(τ)]ηn+1 = ψ(ηn, ηn−1, τ) (1)

where H is the depth of the ocean, τ is the time step and
ηn is the SSH at the n-th time step, and ψ represents a
function of the influence which previous states of SSH and
forcing have on the next state. Equation (1) is discretized on
a two-dimensional orthogonal curvilinear grid using a nine-
point stencil in POP. The stencil can be reorganized into a
linear system Ax = b.

470 1200 2700 4220 7500 10800 16875
0

10

20

30

40

50

60

70

80

90

100

Processor Cores

P
e

rc
e

n
ta

g
e

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

Baroclinic

Barotropic (ChronGear)

Others

Figure 1: Percentage of execution time in 0.1◦

POP using the default diagonal-preconditioned
ChronGear solver.

POP divides the global domain into blocks and distributes
them to processes. Each process only computes the evolu-
tion procedures related to the grid points in its own block,
and maintains a halo region to update data with its neigh-
bors. We assume that the global domain is size N ×N and
is divided into m×m blocks with size of n×n (n = N/m).
We define B and x̃ to be the coefficient matrix and vector
associated with a given block (i.e., a sub-matrix of A of size
n2 × n2), respectively, and the the matrix-vector product of
Bx̃ requires 9n2 operations [20].

2.1 ChronGear solver
ChronGear [9] is a modified conjugate gradient method

that combines two global reductions per iteration into one.
However, as previously mentioned, when thousands of cores
are used in high-resolution (0.1◦) POP, the global reduction
needed by the inner product in ChronGear is still a major
bottleneck. This impact on performance is demonstrated
in Figure 1 for 0.1◦ POP. The percentage execution time
for the linear solver increases as the number of processor
cores increases. When 470 cores are used, the execution
time of the barotropic solver is about 5% of the core POP
execution time (excludes initialization and I/O), whereas
the baroclinic mode time is close to 90%. However, when
several thousand cores are used, the percentage of time spent
in the baroclinic decreases, while the percentage of time in
the barotropic solver increases. With over sixteen thousand
cores, the percentage of the total execution time due to the
barotropic solver is nearly 50%.

For reference, the ChronGear method is provided in Algo-
rithm 1. ChronGear contains three major parts: computa-
tion, boundary updating, and global reduction. Computa-
tion involves matrix-vector and vector-vector multiplications
and vector scaling, all of which exhibit good scalability. The
cost of the boundary communication, which is required to
update the halo area after the matrix-vector multiplication,
is bounded and not problematic at the target core counts.
We will however illustrate in the subsequent section, that
cost of the global reduction, which is required by the inner
product in step 9 does however become problematic at large
core counts.

Algorithm 1 Chronopoulos-Gear Solver
Require: Coefficient matrix B, preconditioner M, initial guess x0

and b associated with grid block Bi,j
// do in parallel with all processes

1: r0 = b−Bx0, s0 = 0, p0 = 0; ρ0 = 1,σ0 = 0, k = 0;
2: while k ≤ kmax do
3: k = k + 1;
4: r′k = M−1rk−1; /* preconditioning */
5: zk = Br′k; /* matrix-vector multiplication */
6: update halo(zk); /* boundary communication */

7: ρ̃k = rTk−1r
′
k;

8: δ̃k = zTk r
′
k;

9: (ρk, δk) = global sum(ρ̃k, δ̃k); /* global reduction */
10: βk = ρk/ρk−1;

11: σk = δk − β2
kσk−1;

12: αk = ρk/σk;
13: sk = r′k + βksk−1;
14: pk = zk + βkpk−1;

15: xk = xk−1 + αksk;
16: rk = rk−1 − αkpk;
17: convergence check(rk); /* check convergence */
18: end while

2.2 Communication bottleneck
Assume p = m2 processes are used, and each process has

exactly one grid block (a typical choice for high-resolution
POP). Then the total time of the barotropic mode is equal
to the execution time of the ChronGear solver on any block.
For each solver iteration, we choose Tc, Tb and Tg to be
the cost of the computation, boundary updating, and global
reduction, respectively.

From Algorithm 1, the computational cost, Tc, contains
four vector-scaling operations (steps 13, 14 ,15, and 16), two
vector-vector multiplication operations for inner products
(steps 7 and 8), and one matrix-vector multiplication (step

5). Therefore, Tc = (4n2 + 2n2 + 9n2)θ+ Tp = 15N
2

p
θ+ Tp,

where θ is the time unit per floating-point operation and Tp
is the cost of preconditioning. For example, Tp = N2

p
θ for

a diagonal preconditioner. When the number of processes
increases, Tc decreases and has a lower limit of zero.

Boundary updating occurs in the halo regions for each
process, after operations like matrix-vector multiplication
and non-diagonal preconditioning, which require one or more
boundary layers. Because every process keeps its own block
and two extra halo layers in POP, only one boundary update
is needed per iteration even when a non-diagonal precondi-
tioner is used. The actual time depends on the network delay
and the volume of the halo regions. With a halo size of 2, the
volume in each boundary is 2n and decreases as the number
of processes increases. The total boundary updating time
for each iteration is then Tb = 4α+(4×2n)β = 4α+(8N√

p
)β,

where α is point-to-point communication latency per mes-
sage and β is the transfer time per byte (inverse of band-
width). The boundary updating time also decreases as the
number of processes increases but has a lower bound of 4α.

ChronGear contains only one global reduction per itera-
tion which contains a MPI allreduce and a masking opera-
tion to exclude land points, thus the global reduction time

satisfies Tg = 2N
2

p
θ+ log pα (assuming that a binomial tree

approach is used). The cost of the masking operation should
decrease with the number of processes p while the cost of the
MPI allreduce should monotonically increase. Note that the
global reduction has virtually no data exchange since there
are only two numbers from each process. Combining all
three components, the execution time of one diagonal pre-

2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

10

12

14

Processor Cores

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

Global Reduction

Halo Updating

Figure 2: Timing for the global reduction and halo
updating components of the ChronGear solver in
0.1◦ POP for one simulation day on Yellowstone.

conditioned ChronGear solver step can be expressed as:

Tcg = Kcg(Tc + Tb + Tg)

= Kcg[18N
2

p
θ + 8N√

p
β + (4 + log p)α] (2)

whereKcg is the number of iterations, which does not change
with the number of processes [20]. Equation (2) shows that
the time required for computation and boundary updating
decreases as the number of processes increases. But the time
required for the global reduction increases with increasing
numbers of processes. Therefore, we expect the execution
time of the ChronGear solver to increase when the num-
ber of processors exceeds a certain threshold. Figure 2 gives
timings for the global reduction and boundary (halo) updat-
ing components of the ChronGear solver for one simulation
day on the Yellowstone machine at NCAR (machine details
given in Section 5). Note that the execution time of global
reduction becomes dominant and increases when more than
a couple thousand cores are used.

3. P-CSI SOLVER
To improve the scalability of POP, a barotropic solver

that requires as few global reductions as possible is desired.
In [20], Hu et al. proposed an appropriate solver based on
Stiefel’s CSI method and did a preliminary evaluation at
modest core counts in a stand-alone version of POP. Here,
we further improve CSI by adding a preconditioning inter-
face, developing an effective preconditioner, and implement-
ing the optimized P-CSI solver into POP within the CESM
framework.

The P-CSI algorithm and its properties are similar to
those of the CSI algorithm detailed in [20], with the ex-
ception of the additional preconditioner (described in detail
in the next section). Notably, P-CSI also does not require
inner-product operations, potentially improving high core
count scalability. The pseudo code for the P-CSI algorithm
designed for POP is shown in Algorithm 2. The total compu-
tation time for each iteration in the diagonal preconditioned

P-CSI solver is Tc = 12N2

p
θ + Tp = 13N2

p
θ, and the total

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Lanczos Steps

It
e

ra
ti
o

n
s

ChronGear

ChronGear + Diagonal

P−CSI + Diagonal

Figure 3: Effect of the number of Lanczos steps on
the number of P-CSI iterations and in 1◦ POP

Algorithm 2 Preconditioned Classical Stiefel Iteration
Require: Coefficient matrix B, preconditioner M, initial guess x0

and right hand side vector b associated with grid block Bi,j ; Es-
timated eigenvalue boundary [ν, µ];
// do in parallel with all processes

1: α = 2
µ−ν , β = µ+ν

µ−ν , γ = β
α , ω0 = 2

γ ; k = 0;

2: r0 = b−Bx0; ∆x0 = γ−1M−1r0; x1 = x0 +∆x0; r1 = b−Bx1;
3: while k ≤ kmax do
4: k = k + 1;
5: ωk = 1/(γ − 1

4α2 ωk−1); /* the iterated function */

6: r′k = M−1rk; /* preconditioning */
7: ∆xk = ωkr

′
k + (γωk − 1)∆xk−1;

8: xk+1 = xk + ∆xk;
9: rk+1 = b−Bxk+1; /* matrix–vector multiplication */
10: update halo(rk+1); /* boundary communication */
11: convergence check(rk+1); /* check convergence */
12: end while

execution time for each P-CSI solve is

Tpcsi = Kpcsi(Tc + Tb)

= Kpcsi[13
N 2

p
θ + 4α+

8N
√
p
β] (3)

where Kpcsi is the number of iterations in one P-CSI solver
step.

P-CSI requires approximations of the largest (µ) and small-
est (ν) eigenvalues of the preconditioned matrix M−1A. Co-
efficient matrix A and its diagonal preconditioner M = Λ(A)
are real symmetric positive definite matrices in POP, there-
fore these extreme eigenvalues can be estimated inexpen-
sively. As in [20] for A, here we use the the Lanczos method
[28] for M−1A, constructing a series of tridiagonal matrices
whose largest and smallest eigenvalues converge to those of
M−1A. In experiments, we found that setting the Lanc-
zos convergence tolerance ε to 0.15 works efficiently in both
1◦ and 0.1◦ POP with both diagonal preconditioning and
our new block preconditioner. Figure 3 indicates that only
a small number of Lanczos steps are necessary to generate
eigenvalue estimates of M−1A that result in near-optimal
P-CSI convergence. In practice, the cost of the Lanczos
method is similar to calling the ChronGear solver a few
times.

In contrast with the ChronGear iteration, the P-CSI itera-

tion requires no global reduction except for checking conver-
gence. We note that P-CSI requires a larger number of iter-
ations than ChronGear (Kpcsi > Kcg) in order to obtain the
same convergence criteria. We expect that this will translate
into a higher execution time for P-CSI than ChronGear at
smaller core counts when global reductions are not an issue.
However, for high-resolution grids when many cores are re-
quired, P-CSI should be notably faster than ChronGear per
iteration (see Equations (2) and (3)), which would result in
a reduction in time to convergence.

4. A BLOCK-EVP PRECONDITIONER
The total execution time of the barotropic solver is the

product of the number of iterations and the execution time
per iteration. With increasing numbers of cores, the exe-
cution time of computation in each iteration decreases, but
the execution time of communication increases. To reduce
communication costs, preconditioning is commonly used to
reduce the number of iterations to convergence, assuming
the cost of preconditioning is reasonable. While the current
ChronGear solver in POP has benefited greatly by using a
simple diagonal preconditioner [29, 30], further improvement
to its convergence rate would significantly reduce the asso-
ciated communication cost and improve scalability. In fact,
the performance of both P-CSI and the existing ChronGear
solvers could be further improved with a more effective pre-
conditioner.

4.1 Block preconditioning
Some parallelizable preconditioning methods such as poly-

nomial, approximate-inverse, multigrid, and block precon-
ditioning have drawn much attention recently. High-order
polynomial preconditioning can reduce iterations as effec-
tively as incomplete LU factorization (ILU) and its variants
[4] in sequential simulations. However, the computational
overhead for polynomial preconditioners typically offsets its
superiority to diagonal preconditioning (e.g., [26, 33]), as a
kth-order polynomial preconditioner requires k matrix vec-
tor multiplications in each iteration. Approximate-inverse
preconditioners, while highly parallelizable, require solving
a linear system several times larger than the original sys-
tem [33, 5], which makes it less attractive for POP than
a simple diagonal preconditioner. Multigrid is highly scal-
able and generally effective for linear systems derived from
elliptic systems of equations. Recent works indicate that
geometric multigrid (GMG) is promising in atmosphere [27]
and ocean [24, 22] modeling when uniform grids and simple
topography are involved. However, in global ocean mod-
els, the presence of complex topography (such as islands,
straits, passages and coastal complexities) combined with
non-uniform or anisotropic grids result in less than ideal
scaling for simple GMG methods [24, 15, 38, 36]. Note that
in CESM-POP, general dipole orthogonal grids are used to
avoid the polar singularity, and only the ocean part of the
earth surface is simulated with masked lands. These choices
lead to an elliptic system with variable coefficients defined
on an irregular domain with non-uniform grids, making the
effective use of GMG non-trivial. The scenario is even worse
for the high resolution ocean grid where thousands of islands
and narrow passages are not representable at a grid coars-
ening of even one or two levels (e.g., the Bering Strait). For
complex geometries, algebraic multigrid (AMG) is often a
viable alternative to GMG. A drawback of AMG, though, is

Bnw
i Bne

i Bsw
i Bse

iBn
i Bw

i Bi Be
i Bs

i

Figure 4: Sparsity pattern of the coefficient matrix
developed from nine-point stencils. The whole do-
main is divided into 3 × 3 non-overlapping blocks.
Elements in red rectangles are coefficients between
points in blocks. Elements in blue rectangles are co-
efficients between points from the i-th block and its
neighbor blocks.

that in some cases, the setup cost can exceed that of itera-
tive solver itself, making it inferior to a well-preconditioned
CG method (e.g., [27]), particularly when the number of CG
iterations is reasonably low as for CESM-POP (Figure 6 in
the next section). Further, because POP requires solving
the linear equation tens and hundreds of times per simula-
tion day in the low and high resolution versions, respectively,
and thousands of simulation years are needed in the typical
simulation, the costly setup of AMG is prohibitive. Finally,
block preconditioning has been shown to be an effective par-
allel preconditioner (e.g., [8, 40]) and is appealing for POP
because it makes use of the block structure of the coefficient
matrix that arises from discretization of the elliptic equa-
tions.

To facilitate describing the new block EVP preconditioner,
we first briefly review a general block preconditioner, as il-
lustrated by Figure 4. If the linear system of N × N grid
points is reordered block-by-block with size of n × n (e.g.,
N/3 × N/3 in Figure 4), then coefficient matrix A can be
represented by a nine-diagonal block matrix. Each row of
this matrix contains nine sub-matrices. Each Bi (red blocks)
is a block matrix containing coefficients of the grid points in
the i-th block, which share the same structure as A but have
a smaller size (n2×n2). Be

i , Bw
i , Bn

i and Bs
i are block matri-

ces containing coefficients of points on east, west, north and
south boundaries and the points on their respective neigh-
boring blocks, thus having at most 3n nonzero elements dis-
tributed on n rows. Bnw

i , Bne
i , Bsw

i and Bse
i have only

one nonzero element, representing the coefficient of corner
points and their neighboring points on the northwest, north-
east, southwest and southeast blocks. The traditional block
preconditioning method constructs the approximate inverse
of A by sequentially factorizing it with approximations of
B−1

i , which is ill-suited for parallel applications. In con-
trast, the inverse of the block diagonal of A, which provides
a good approximation for A, can be calculated naturally in
parallel. The inverse of the diagonal block matrices is

M−1 =

 B−1
1

. . .

B−1
m2



Figure 5: EVP marching method for nine-point
stencil. The solution on point (i + 1, j + 1) can be
calculated using the equation on point (i, j), provid-
ing solutions on other neighbor points of point (i, j).

Using M as a preconditioner, the preconditioning process
x = M−1y is typically transformed into solving the sparse
linear equations Bixi = yi for each block, (instead of explic-
itly constructing B−1

i) and solving via LU decomposition.
The arithmetic complexity of solving these equations with
LU decomposition is O(n4), providing that the LU decom-
position is previously initialized.

4.2 Error Vector Propagation method
In contrast with LU decomposition, the arithmetic com-

plexity of solving the equationsBixi = yi isO(n2), whereBi

is n2×n2, when using the Error Vector Propagation (EVP)
method, which to the best of our knowledge is one of the
least costly algorithms for solving elliptic equations in serial
[31]. The EVP method and its variants have been used in
several ocean models (e.g., Sandia Ocean Modeling System
[13] and CANadian version of DIEcast [32]). Further, Tseng
and Chien [37] employed a modified parallel EVP method
based on domain-decomposition as a solver for the global
ocean simulation.

The EVP method works as follows. We discretize Equa-
tion 1 (the implicit elliptic system of equations for SSH) into
the following form so that we can march the solution north-
eastward assuming all other neighboring points are exactly
known :

ηi+1,j+1 = (1/Ane
i,j)(ψi,j −A0

i,jηi,j −Ae
i,jηi+1,j

−An
i,jηi,j+1 −Ane

i−1,jηi−1,j+1 +Ae
i−1,jηi−1,j

−Ane
i−1,j−1ηi−1,j−1 −An

i,j−1ηi,j−1 −Ane
i+1,j−1ηi,j−1) (4)

Figure 5 illustrates a Dirichlet boundary elliptic equation
Bx = ψ on a small domain. We define the interior points
next to the south and west boundaries as the initial guess
points e and those next to the north and east boundaries
are the final boundary points f (e.g., e = {E1, . . . , E7},
f = {F1, . . . , F7} in Figure 5). If the true solution on e
is known, the exact values over the whole domain can be
computed sequentially from southwest to northeast corners,
using Equation 4. This procedure is referred to as marching.
Unfortunately, the value on e is often not known until the
elliptic equation is solved. However, we can get a solution
x satisfying the elliptic equation on the whole domain ex-
cept on the boundary, by first guessing the value x|e on e
and then calculating the rest using the marching method.

Algorithm 3 Nine-point Error Vector Propagation method
Require: Residual ψ associated with a domain containing n×n grid

points, k = size(e) = 2n− 5;
// preprocessing

1: x = 0
2: for i = 1, k do
3: x|e(i) = 1
4: x = marching(x, 0)
5: W (i, :) = x|f
6: x|e(i) = 0
7: end for
8: R = inverse(W)

// solving
9: x = marching(x, ψ)
10: F = (x− η)|f
11: x|e = x|e − R ∗ F
12: x = marching(x, ψ)

Then E = (x − η)|e and F = (x − η)|f are error vectors on
e and f, respectively. The error vector F is already known
since f are boundary points (Dirichlet boundary condition
is imposed). The relationship between the error on initial
guess points and the final boundary points can be repre-
sented as F = W ∗ E. This influence coefficient matrix W
can be formed by marching on the whole domain with unit
vectors on the initial guess points and zero residual value in
the whole domain. We summarized the EVP algorithm for
an elliptic equation with zero boundary in Algorithm 3.

The EVP method contains two steps: preprocessing and
solving. In the preprocessing step, the influence coefficient
matrix and its inverse are computed, involving a calculation
of Cpre = (2n−5)∗9n2+(2n−5)3 = O(26n3). Obtaining the
solution in the solve step requires Cevp = 2∗9n2+(2n−5)2 =
O(22n2). This estimate indicates that EVP has lower com-
putational cost for the solver step than other direct solvers
such as LU. Therefore, EVP can be practical in real ap-
plications from a cost standpoint because preprocessing is
only needed once at the beginning to obtain the influence
coefficient matrix and its inverse.

4.3 EVP as a parallel preconditioner
The EVP method described above is an efficient option

for solving elliptic equations. However, a major drawback
of EVP is that it cannot solve on a large domain without
further modifications due to numerical instabilities when
marching [31]. But on a small domain up to the size of
12 × 12, EVP solves with an acceptable round-off error of
O(10−8) when double-precision floating-point is used. Its
effectiveness on small domains and low-computational cost
make EVP an ideal method for parallel block precondition-
ing. Here, we develop a block preconditioning technique
based on the EVP method in each block to further improve
the performance of the barotropic solver in POP. Each pre-
conditioner step solves the elliptic equations Bix = y(i =
1, ...,m2) in parallel.

The fact that EVP is not well-suited for large domains is
not an issue for large-scale parallel computing, where larger
number of processors result in smaller domains. Further-
more, for our system of equations, the coefficients related
to north, south, east and west neighbors on every point are
one magnitude order smaller than the others. We found that
removing these coefficients reduces the cost of EVP precon-
ditioning by about a half without any significant impact on
the convergence rate when used with both ChronGear and
P-CSI. As a result, the execution time of EVP precondition-

0

100

200

300

400

500

600

Solver Cases

It
e

ra
ti
o

n
 N

u
m

b
e

r

1
◦

1
◦

0.1
◦

0.1
◦ ChronGear P−CSI ChronGear P−CSI

No precondtioning

Diagonal preconditioning

EVP precondtioning

Figure 6: Average number of iterations for different
barotropic solvers.

ing can be expressed as T ′p = 14n2θ = 14N
2

p
θ. The actual

cost of T ′p depends on the size of the local block, which
decreases as more processor cores are used. Thus, the to-
tal execution time for one ChronGear and P-CSI solver step
with block-EVP preconditioning are

T ′cg = K′cg(T ′c + T ′b + T ′g)

= K′cg[31N
2

p
θ + 8N√

p
β + (4 + log p)α], (5)

and

T ′pcsi = K′pcsi(T ′c + T ′b)

= K′pcsi[26
N 2

p
θ + 4α+

8N
√
p
β], (6)

respectively.
The implementation of EVP preconditioning in POP sig-

nificantly reduces the number of iterations required for con-
vergence for both the ChronGear and P-CSI solvers. In
particular, Figure 6 demonstrates that EVP precondition-
ing reduces the iteration count by about two-thirds for both
the 1◦ and 0.1 ◦ resolutions, which is comparable to the
approximate-inverse preconditioner proposed in [33] (which
is not implemented in CESM POP). Although EVP precon-
ditioning doubles the computation in each iteration, it halves
both global and boundary communications which dominate
in the barotropic execution time at large core counts. An-
other advantage of EVP preconditioning is the low prepro-
cessing cost. In 0.1◦ case, the cost of setting up the precon-
ditioning matrix is less than that of one call to the solver
when 512 processor cores are used, and this cost is further
decreased when more processors are used. Finally, we note
that the 0.1◦ case requires fewer iterations than the 1◦ case,
because the higher resolution POP grid has a ratio of longi-
tude to latitude grid spacing that is closer to 1, resulting in
a smaller condition number for the coefficient matrix.

5. EXPERIMENTAL RESULTS
We first evaluate the performance of our new barotropic

solver in CESM1.2.0 on the Yellowstone supercomputer, lo-
cated at NCAR-Wyoming Supercomputing Center (NWSC)
[23]. Yellowstone uses 2.6-Ghz Intel Xeon E5-2670 “Sandy

48 96 192 384 768
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Processor Cores

S
e

c
o

n
d

s
 p

e
r

S
im

u
la

ti
o

n
 D

a
y

ChronGear + Diagonal

ChronGear + EVP

P−CSI + Diagonal

P−CSI + EVP

Figure 7: Execution times for the barotropic mode
in 1◦ POP for one simulation day.

Bridge” processors providing a total of 72,576 cores that are
connected by a 13.6 GBps InfiniBand network. Obtaining
good performance on Yellowstone is critical as its role is
to support atmospheric sciences and more than 50% of its
usage is due to CESM [42] To focus on the performance
of POP, we use the CESM “G NORMAL YEAR” compo-
nent set which uses active ocean and sea ice components
(the atmosphere component is data-driven). We examine
the two most frequently-used POP horizontal grid resolu-
tions: 1◦ (320 × 384) and 0.1◦ (3600 × 2400). Note that
by default, CESM1.2.0 sets Yellowstone’s MPI environment
eager limit (MP EAGER LIMIT), which controls the max-
imum message size before a rendezvous protocol is used, to
zero. We discovered that by using the default eager limit on
Yellowstone (MP EAGER LIMIT = 131072) instead, POP
performance significantly improves.

5.1 Low-resolution simulations
The execution times for the barotropic mode with avail-

able solvers in 1◦ POP on Yellowstone are shown in Fig-
ure 7. With the default diagonal preconditioning, P-CSI
out-performs ChronGear on all core counts and reduces the
solver execution time from 0.58s to 0.41s per simulation day
(1.4x speedup) at the highest core count (768). Further,
with the new block EVP preconditioner, convergence is im-
proved for both the ChronGear and P-CSI solvers at higher
core counts. At 768 cores, P-CSI with EVP achieves 0.37s
per simulation day, which is an 1.6x improvement over the
original ChronGear solver with diagonal preconditioning.

Table 1: Percent improvement of the total execution
time for 1◦ POP on Yellowstone.

Number of cores 48 96 192 384 768

ChronGear+EVP -.5% 1.1% 6.5% 10.8% 12.1 %
P-CSI+Diagonal .7% 3.9% 9.3% 11.0% 12.6 %
P-CSI+EVP -2.4% .4% 7.4% 14.4% 16.7%

The improvement of the barotropic solver reduces the
total execution time for the entire POP model. Table 1
lists the percentage improvement of POP for the three new
solver/preconditioner options compared to POP with the
diagonal-preconditioned ChronGear solver. Times were ob-
tained from a 5-day simulation, with model initialization

and I/O excluded. P-CSI with a block-EVP preconditioner
yields a 16.7% improvement on 768 processor cores. While
a 16.7% improvement may seem modest, POP at 1◦ reso-
lution is commonly run for multi-century timescales. Such
an improvement may translate into the saving of millions of
CPU hours. Further, the 1◦ resolution needs to be run at
(relatively) high core counts when POP is configured with
biogeochemistry mode due to the many additional tracers
required.

5.2 High-resolution simulations
Now we test the scalability of the new barotropic solver in

high-resolution 0.1◦ POP on Yellowstone. At this resolution,
the choice of ocean block size and layout, which affects the
distribution of work across processors, has a large impact on
performance. Therefore, to remove this influence from our
scaling results, we were careful to specify block decomposi-
tions for each core count with the same aspect ratio (3:2)
and land ratio (.25) and to use space-filling curves. We use
the default timestep for 0.1◦ POP, which is 500 time steps
per day (dt count = 500). Finally, for the sake of consis-
tency, for all solvers we checked for convergence every 10
iterations. Note that because P-CSI iterations are relatively
inexpensive (compared to performing the POP convergence
check), P-CSI performance may improve if the check for con-
vergence occurs less frequently.

As shown in Figure 8 (left), ChronGear performance be-
gins to degrade after about 2700 cores, while the execution
time for P-CSI becomes relatively flat at that point. With
diagonal preconditioning, P-CSI accelerates the barotropic
mode in 0.1◦ POP by 4.3x (from 19.0s to 4.4s per simulation
day) on 16,875 cores. EVP preconditioning further improves
the performance of both ChronGear and P-CSI, resulting
in a speedup of the original barotropic mode by 1.4x and
5.2x, respectively. In Section 2, we demonstrated that the
original barotropic solver takes an increasing percentage of
POP execution time as the number of cores increases. In
particular, on 16,875 cores, ChronGear with diagonal pre-
conditioning accounts for about 50% of the total execution
time. In contrast, Figure 9 illustrates the improvement of
the barotropic mode with the more-scalable EVP precondi-
tioned P-CSI solver, which constitutes only about 16% of
the total execution time on 16,875 cores.

Improvement of the barotropic solver benefits the overall
performance of POP, especially at large core counts. Simu-
lation rate (simulated years per wall-clock day) is a popular
criterion for climate model performance, and here we use
the core simulation rate (i.e., the execution time excluding
initialization and I/O costs). A simulation rate of 5 sim-
ulated years per wall-clock day is considered the minimum
rate required to run long term climate simulations [11], and
Figure 8 (right) shows that P-CSI can attain higher rates
than ChronGear. The EVP-preconditioned P-CSI solver im-
proves the core simulation rate of POP by 1.7x on 16,875
cores, from 6.2 to 10.5 simulated years per wall-clock day.

To illustrate the source of improvement, more detailed
timing information for the barotropic solvers is provided
in Figure 10. Figure 10 indicates that P-CSI outperforms
ChronGear primarily due to fewer global reductions. The
reduction in global reductions will also significantly reduce
the sensitivity of POP to operating system noise [14] by
increasing the time between global synchronization. In ad-
dition, the block-EVP preconditioner reduces the boundary

2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

20

25

Processor Cores

S
e

c
o

n
d

s
 p

e
r

S
im

u
la

ti
o

n
 D

a
y

ChronGear + Diagonal

ChronGear + EVP

P−CSI + Diagonal

P−CSI + EVP

2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

10

12

Processor Cores

S
im

u
la

te
d

 Y
e

a
rs

 P
e

r
w

a
ll−

c
lo

c
k
 D

a
y
 (

S
Y

P
D

)

ChronGear + Diagonal

ChronGear + EVP

P−CSI + Diagonal

P−CSI + EVP

Figure 8: Execution times for the barotropic mode in 0.1◦ POP for one simulation day on Yellowstone (left).
The core simulation rates of 0.1◦ POP on Yellowstone (right).

470 1200 2700 4220 7500 10800 16875
0

10

20

30

40

50

60

70

80

90

100

Processor Cores

P
e

rc
e

n
ta

g
e

 o
f

E
x
e

c
u

ti
o

n
 T

im
e

Baroclinic

Barotropic

Others

Figure 9: Percentage of execution time in 0.1◦ POP
using P-CSI with block-EVP preconditioning.

update costs by reducing the number of iterations required.
Computation costs for the barotropic solver are negligible
compared to the global reduction and boundary update costs
at large core counts, and, therefore, the extra computations
(almost double) required by the EVP preconditioner have
little to no impact. Finally, note that the global reduction
time actually decreases at less than 1200 cores which is con-
sistent with the theoretical results in equation 2 and 3.

5.3 Simulations on Edison
Now we run the 0.1◦ POP simulations on the Edison su-

percomputer to verify that performance improvements are
not unique to Yellowstone. Edison, which is the newest
supercomputer at the National Energy Research Scientific
Computing Center (NERSC), consists of 133,824 2.4 GHz
Intel “Ivy Bridge” processor cores connected by an 8GBps
Cray Aries high-speed interconnect with Dragonfly topology.

Figure 11 shows that simulations on Edison with the four
solver configurations have similar performance characteris-

tics as on Yellowstone. We note that we encountered much
more variability in the global communication times in our
simulations on Edison (as compared to Yellowstone), likely
due to network contention [39]. As a result, the ChronGear
times (with both preconditioners) varied a lot from run to
run, so we took the average of the best three results to rep-
resent the execution time. Because P-CSI has hardly any
global reductions (only in the convergence check), the vari-
ability in those runs was small. On Edison, P-CSI with diag-
onal preconditioning in 0.1◦ POP accelerates the barotropic
mode by 3.7x (from 26.2s to 7.0s per simulation day) on
16,875 cores. With EVP preconditioning, both ChronGear
and P-CSI performance improves, and the combination of
P-CSI and EVP preconditioning results in a 5.6x speedup.

6. EVALUATING THE NEW SOLVER
Due to the chaotic nature of the ocean dynamics, even a

round-off difference from the barotropic solver may poten-
tially result in distinct model solutions. Therefore, because
we cannot guarantee bit-for-bit (BFB) identical results in
ocean solutions when a new solver is introduced, we needed
to show that the use of P-CSI with EVP did not result in
inaccuracies (or even a changed climate) before it could be
formally incorporated into a POP release.

When POP is ported to a new machine, a similar situa-
tion occurs where running the same simulation on the two
machines is not expected to produce BFB results. The exist-
ing POP procedure to verify that a port to a new machine
was successful involves running a specific case on the new
machine for five simulation days, and then computing the
root-mean-square error (RMSE) between the new solution
and the standard dataset released by NCAR for the SSH (sea
surface height) field. While this procedure provides a sim-
ple criterion for evaluating CESM results on new machines
(which may contain errors due to the software or hardware
environment), we found that it was insufficient for detecting
and evaluating solver-induced errors. For example, we ran
the 1◦ case for three years with different convergence toler-
ances varying from 10−10 to 10−16 in the barotropic solver
(default is 10−13) and calculated the RMSE between a given
case and the most strict tolerance case (10−16). Figure 12

2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

10

12

14
Global Reduction

Processor Cores

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
)

ChronGear + Diagonal

ChronGear + Evp

P−CSI + Diagonal

P−CSI + Evp

2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

10

12

14
Boundary Updating

Processor Cores

E
x
e

c
u

ti
o
n

 T
im

e
 (

s
)

ChronGear + Diagonal

ChronGear + Evp

P−CSI + Diagonal

P−CSI + Evp

Figure 10: Execution times for the major components of the barotropic solvers in 0.1◦ POP on Yellowstone:
global reduction (left) and boundary communication (right).

2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

20

25

30

Processor Cores

S
e

c
o

n
d

s
 p

e
r

S
im

u
la

ti
o

n
 D

a
y

ChronGear + Diagonal

ChronGear + EVP

P−CSI + Diagonal

P−CSI + EVP

2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

8

9

10

Processor Cores

S
im

u
la

te
d

 Y
e

a
rs

 P
e

r
w

a
ll−

c
lo

c
k
 D

a
y
 (

S
Y

P
D

)

ChronGear + Diagonal

ChronGear + EVP

P−CSI + Diagonal

P−CSI + EVP

Figure 11: Execution times for the barotropic mode in 0.1◦ POP for one simulation day on Edison (left).
The core simulation rate of 0.1◦ POP on Edison (right).

shows the RMSE for the temperature field with various con-
vergence tolerances for each month, and clearly error intro-
duced by modifying the solver convergence tolerance is not
revealed in the temperature field (nor was it evident in any
of the other diagnostic fields, such as velocity and SSH). We
had expected that the simulations with tolerances of 10−10

and 10−11 would have larger RMSE values than the others.
However, this was not the case, and, during months twelve
and twenty, the 10−10 case has almost the smallest RMSE.
Note that to isolate the effect of the linear solver, we only
looked at error in the open seas (POP does not simulate well
on several marginal seas).

Because the existing simple RMSE test was insufficient
for detecting whether the climate had been altered, we de-
veloped an alternative to evaluating the new ocean solver
using a statistical approach. Rather than relying on a single
simulation, an ensemble of simulations can better represent
the natural variability of the chaotic climate simulation, as
described in [2] in the context of data compression for the
CESM Community Atmosphere Model (CAM), and be used

as a baseline for evaluating non-BFB modifications. Similar
to [2], we create an ensemble of simulations which are identi-
cal to the default setup except for an order 10−14 perturba-
tion in the initial ocean temperature. This perturbation size
is not expected to produce different climate model states.
We found that an ensemble of size 40 was sufficient for our
purposes to represent the variability in the ocean, and we
ran longer simulations than for CAM (12-months) due to
the longer time-scales present in the ocean. Also note that
we ultimately chose to evaluate only the three-dimensional
temperature field (instead of the two-dimensional SSH) as
we found it to be the most useful diagnostic variable for
revealing differences.

We determine whether the new result is consistent with
the reference ensemble results as follows. We define the en-
semble output at time T as E = {X1, X2, ..., Xm}, where m
is the size of the ensemble. At a given point j, we have a
series of possible results for each variable X from the en-
semble {X1(j), X2(j), ..., Xm(j)}. As the ensemble size in-
creases, this series more correctly reflects the distribution

0 5 10 15 20 25 30 35
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Simulation Months

R
M

S
E

ChronGear (10
−10

)

ChronGear (10
−11

)

ChronGear (10
−12

)

ChronGear (10
−13

)

ChronGear (10
−14

)

P−CSI (10
−13

)

Figure 12: Monthly Root Mean Square Error
(RMSE) of temperature for cases with different con-
vergence tolerances in 1◦ POP.

of reasonable realization at the given point. We define the
mean and standard deviation of this series at point j as
µ(j) and δ(j), respectively. Let the new case have the result

X̃, then the root-mean-square Z-score indicates the average
error between the new case and the ensemble data:

RMSZ(X̃, E) =

√√√√ 1

n

n∑
j=1

(
X̃(j)− µ(j)

δ(j)
)2

We then re-evaluated the various solver tolerances using the
ensemble-based RMSZ measurement. Figure 13 indicates
that, unlike the simple RMSE test, the new ensemble-based
method is able to identify larger errors due to less strict
convergence tolerances. Now the two cases with the loosest
tolerances clearly have RMSZ scores on the same order as
the error they introduced into the solver and are noticeably
removed from the ensemble distribution. This success led us
to use the ensemble-based metric to evaluate our new solver
and find that the P-CSI results were consist with those of
the ensemble (as were the default and stricter tolerances).

7. RELATED WORK
We briefly review related work in two categories: general

efforts to improve parallel CG performance and efforts spe-
cific to ocean modeling. In the first category, reducing global
communication costs for CG has been of interest since the
algorithm was parallelized. A particularly nice overview of
this effort can be found in [16]. Methods that reduce the
number of global reductions over the standard formulation,
such as the ChronGear [9] variant used in POP, were early
contributions to the field and still popular. Early s-step
methods such as that in [7] as well as more recent incar-
nations (e.g., [19]) also reduce global communications, but
combining them with a sophisticated preconditioner is non-
trivial. In addition, recent efforts at improving the perfor-
mance of parallel CG include a variant that overlaps the
global-reduction with the matrix-vector computation via a
pipelined-approach [16]. We take a different tack along the
lines of [18] in that we abandon the CG algorithm and re-

0 5 10 15 20 25 30 35

10
0

10
1

10
2

Simulation Months

R
M

S
Z

ChronGear (10
−10

)

ChronGear (10
−11

)

ChronGear (10
−12

)

ChronGear (10
−13

)

ChronGear (10
−14

)

P−CSI (10
−13

)

Figure 13: Monthly Root Mean Square Z-score for
temperature for cases with different convergence tol-
erances. The yellow area represent the range of
RMSZ within the 40-member ensemble.

place it by a simpler iterative method that doesn’t include
global reductions.

Particular to ocean models, a number of efforts have been
made to reduce solver communication overhead. In [41], the
use of OpenMP parallelism in the barotropic mode is shown
to improve performance at large core counts. Land elimi-
nation is another common strategy for reducing communi-
cation overhead, and in [10, 12], space-filling curves both
improve load-balancing and reduce the number of processes
involved in communications by eliminating land blocks. Fur-
ther, early attempts to overlap communication with com-
putation for parallel ocean general circulation models are
proposed in [3], as well as methods to reduce communica-
tion by increasing halo sizes. Although all these approaches
may improve performance, they do not eliminate the global
reduction bottleneck. In fact, the promising preliminary re-
sults in our previous work [20], obtained by replacing CG
with a Chebyshev type method in the stand-alone variant of
POP, encouraged the work in this manuscript.

Finally, our switch away from CG required the develop-
ment of an effective preconditioner for the barotropic mode.
We mention a couple of preconditioning strategies that have
been explored to reduce barotropic solver costs on high-
resolution grids. Polynomial-preconditioning and local appr-
oximate-inverse methods are shown to accelerate CG conver-
gence in a parallel ocean general circulation model in [33].
More recently, an incomplete Cholesky preconditioner was
added to the Max Planck Institute ocean model (MPIOM)
to improve CG performance on large core counts [1].

8. CONCLUSION
The scalability of high-resolution CESM climate simula-

tions has been impeded by poor performance of the ChronGear
barotropic solver in POP at large core counts. This pa-
per improves solver performance by reducing communica-
tion costs via an alternative solver with fewer global re-
ductions and by improving convergence via the develop-
ment of block EVP preconditioner particularly well-suited
to the barotropic mode. The performance of the resulting

solver, P-CSI with block-EVP, is evaluated on two machines
commonly-used for CESM simulations, and solver speedup is
as high as 5x. Confidence that the solver did not adversely
impact the ocean simulation was ensured by adapting an
ensemble-based consistency strategy to the POP, allowing
for the solver’s inclusion in a future CESM release. The
new barotropic solver will clearly benefit both future low-
and high-resolution CESM simulations, particularly for the
fully-coupled model whose scalability has historically been
inhibited by POP.

9. ACKNOWLEDGMENTS
Computing resources were provided by the Climate Simu-

lation Laboratory at NCAR’s Computational and Informa-
tion Systems Laboratory (sponsored by the NSF and other
agencies) and the National Energy Research Scientific Com-
puting Center, a DOE Office of Science User Facility sup-
ported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

This work is supported in part by a grant from the Na-
tional Natural Science Foundation of China (41375102), the
National Grand Fundamental Research 973 Program of China
(No. 2014CB347800), and the National High Technology
Development Program of China (2011AA01A203).

10. REFERENCES
[1] P. Adamidis, V. Heuveline, and F. Wilhelm. A

high-efficient scalable solver for the global
ocean/sea-ice model MPIOM. KIT, 2011.

[2] A. H. Baker, H. Xu, J. M. Dennis, M. N. Levy,
D. Nychka, S. A. Mickelson, J. Edwards,
M. Vertenstein, and A. Wegener. A methodology for
evaluating the impact of data compression on climate
simulation data. In Proceedings of the 23rd
international symposium on High-performance parallel
and distributed computing, pages 203–214. ACM, 2014.

[3] M. Beare and D. Stevens. Optimisation of a parallel
ocean general circulation model. In Annales
Geophysicae, volume 15, pages 1369–1377. Springer,
1997.

[4] M. Benzi. Preconditioning techniques for large linear
systems: a survey. Journal of Computational Physics,
182(2):418–477, 2002.

[5] L. Bergamaschi, G. Gambolati, and G. Pini. A
numerical experimental study of inverse
preconditioning for the parallel iterative solution to 3d
finite element flow equations. Journal of
Computational and Applied Mathematics,
210(1):64–70, 2007.

[6] F. O. Bryan, R. Tomas, J. M. Dennis, D. B. Chelton,
N. G. Loeb, and J. L. McClean. Frontal scale air-sea
interaction in high-resolution coupled climate models.
Journal of Climate, 23(23):6277–6291, 2010.

[7] A. T. Chronopoulos and C. W. Gear. S-step iterative
methods for symmetric linear systems. J. Comput.
Appl. Math., 25(2):153–168, Feb. 1989.

[8] P. Concus, G. Golub, and G. Meurant. Block
preconditioning for the conjugate gradient method.
SIAM Journal on Scientific and Statistical Computing,
6(1):220–252, 1985.

[9] E. D’Azevedo, V. Eijkhout, and C. Romine. Conjugate
gradient algorithms with reduced synchronization

overhead on distributed memory multiprocessors.
1999.

[10] J. Dennis. Inverse space-filling curve partitioning of a
global ocean model. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–10. IEEE, 2007.

[11] J. Dennis, M. Vertenstein, P. Worley, A. Mirin,
A. Craig, R. Jacob, and S. Mickelson. Computational
performance of ultra-high-resolution capability in the
community earth system model. International Journal
of High Performance Computing Applications,
26(1):5–16, 2012.

[12] J. M. Dennis and H. M. Tufo. Scaling climate
simulation applications on the IBM Blue Gene/L
system. IBM Journal of Research and Development,
52(1.2):117 –126, jan. 2008.

[13] D. E. Dietrich, M. Marietta, and P. J. Roache. An
ocean modelling system with turbulent boundary
layers and topography: Numerical description.
International journal for numerical methods in fluids,
7(8):833–855, 1987.

[14] K. B. Ferreira, P. Bridges, and R. Brightwell.
Characterizing application sensitivity to OS
interference using kernel-level noise injection. In
Proceedings of SC Conference, pages 1–12. SC
Conference, 2008. doi:10.1145/1413370.1413390.

[15] S. R. Fulton, P. E. Ciesielski, and W. H. Schubert.
Multigrid methods for elliptic problems: A review.
Monthly Weather Review, 114(5):943–959, 1986.

[16] P. Ghysels and W. Vanroose. Hiding global
synchronization latency in the preconditioned
conjugate gradient algorithm. Parallel Computing,
40(7):224–238, 2014.

[17] T. Graham. The importance of eddy permitting model
resolution for simulation of the heat budget of tropical
instability waves. Ocean Modelling, 79:21–32, 2014.

[18] M. Gutknecht and S. Röllin. The Chebyshev iteration
revisited. Parallel Computing, 28(2):263–283, 2002.

[19] M. Hoemmen. Communication-avoiding Krylov
subpace methods. PhD thesis, University of California,
Berkeley, 2010.

[20] Y. Hu, X. Huang, X. Wang, H. Fu, S. Xu, H. Ruan,
W. Xue, and G. Yang. A scalable barotropic mode
solver for the parallel ocean program. In Euro-Par
2013 Parallel Processing, pages 739–750. Springer,
2013.

[21] P. W. Jones, P. Worley, Y. Yoshida, and J. B. White
III. Practical performance portability in the parallel
ocean program (POP). Concurrency and Computation:
Practice and Experience, 17:1317–1327, August 2005.

[22] Y. Kanarska, A. Shchepetkin, and J. McWilliams.
Algorithm for non-hydrostatic dynamics in the
regional oceanic modeling system. Ocean Modelling,
18(3):143–174, 2007.

[23] R. Loft, A. Andersen, F. Bryan, J. M. Dennis,
T. Engel, P. Gillman, D. Hart, I. Elahi, S. Ghosh,
R. Kelly, A. Kamrath, G. Pfister, M. Rempel,
J. Small, W. Skamarock, M. Wiltberger, B. Shader,
P. Chen, and B. Cash. Yellowstone: A dedicated
resource for earth system science. In J. S. Vetter,
editor, Contemporary High Performance Computing:
From Petascale Toward Exascale, Volume Two,

volume 2 of CRC Computational Science Series, page
262. Chapman and Hall/CRC, Boca Raton, 1 edition,
2015.

[24] Y. Matsumura and H. Hasumi. A non-hydrostatic
ocean model with a scalable multigrid poisson solver.
Ocean Modelling, 24(1):15–28, 2008.

[25] J. L. McClean, D. C. Bader, F. O. Bryan, M. E.
Maltrud, J. M. Dennis, A. A. Mirin, P. W. Jones,
Y. Y. Kim, D. P. Ivanova, M. Vertenstein, et al. A
prototype two-decade fully-coupled fine-resolution
CCSM simulation. Ocean Modelling, 39(1):10–30,
2011.

[26] P. D. Meyer, A. J. Valocchi, S. F. Ashby, and P. E.
Saylor. A numerical investigation of the conjugate
gradient method as applied to three-dimensional
groundwater flow problems in randomly heterogeneous
porous media. Water Resources Research,
25(6):1440–1446, 1989.

[27] E. H. Müller and R. Scheichl. Massively parallel
solvers for elliptic partial differential equations in
numerical weather and climate prediction. Quarterly
Journal of the Royal Meteorological Society,
140(685):2608–2624, 2014.

[28] C. Paige. Accuracy and effectiveness of the lanczos
algorithm for the symmetric eigenproblem. Linear
Algebra and its Applications, 34(0):235 – 258, 1980.

[29] G. Pini and G. Gambolati. Is a simple diagonal scaling
the best preconditioner for conjugate gradients on
supercomputers? Advances in Water Resources,
13(3):147–153, 1990.

[30] R. S. Reddy and M. M. Kumar. Comparison of
conjugate gradient methods and strongly implicit
procedure for groundwater flow simulation. Journal of
the Indian Institute of Science, 75(6):667, 2013.

[31] P. J. Roache. Elliptic marching methods and domain
decomposition, volume 5. CRC press, 1995.

[32] J. Sheng, D. G. Wright, R. J. Greatbatch, and D. E.
Dietrich. Candie: A new version of the diecast ocean
circulation model. Journal of Atmospheric and
Oceanic Technology, 15(6):1414–1432, 1998.

[33] R. Smith, J. Dukowicz, and R. Malone.

Parallel ocean general circulation modeling. Physica
D: Nonlinear Phenomena, 60(1):38–61, 1992.

[34] R. Smith, P. Jones, B. Briegleb, F. Bryan,
G. Danabasoglu, J. Dennis, J. Dukowicz, C. E. B.
Fox-Kemper, P. Gent, M. Hecht, et al. The parallel
ocean program (POP) reference manual ocean
component of the community climate system model
(CCSM). 2010.

[35] T. Stocker, D. Qin, G. Plattner, M. Tignor, S. Allen,
J. Boschung, A. Nauels, Y. Xia, B. Bex, and
B. Midgley. IPCC, 2013: Climate change 2013: the
physical science basis. contribution of working group I
to the fifth assessment report of the Intergovernmental
Panel on Climate Change. 2013.

[36] K. Stüben. A review of algebraic multigrid. Journal of
Computational and Applied Mathematics,
128(1):281–309, 2001.

[37] Y.-h. Tseng and M.-h. Chien. Parallel
domain-decomposed Taiwan multi-scale community
ocean model (pd-timcom). Computers & Fluids,
45(1):77–83, 2011.

[38] Y.-h. Tseng and J. H. Ferziger. A ghost-cell immersed
boundary method for flow in complex geometry.
Journal of computational physics, 192(2):593–623,
2003.

[39] D. Wang, A. Bhatele, and D. Ghosal. Performance
variability due to job placement on edison. Poster
presented at SC14, Nov 16-21, New Orleans.

[40] J. A. White and R. I. Borja. Block-preconditioned
newton–krylov solvers for fully coupled flow and
geomechanics. Computational Geosciences,
15(4):647–659, 2011.

[41] P. H. Worley, A. A. Mirin, A. P. Craig, M. A. Taylor,
J. M. Dennis, and M. Vertenstein. Performance of the
community earth system model. In Proceedings of
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11,
pages 54:1–54:11, New York, NY, USA, 2011. ACM.

[42] Yellowstone workload study, v4.1.
https://www2.cisl.ucar.edu/NWSC-2, September
2014.

