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16 % in temperature. We concluded that the use of low-res-
olution climate models to project future rainfall in the Sahel 
requires caution because the model hindcasts may quickly 
diverge even the same boundary conditions and forcings 
are applied. The model bias may easily grow up within a 
few months in the short-range CAM-LETKF hindcast, let 
along the free model centennial simulations. Unconstrained 
future climate model projections for the Sahel must more 
effectively capture the short-term key boundary-layer 
dynamics in the boreal summer to be credible regardless 
model dynamics and physics.

Keywords  Land–atmosphere interaction · Global climate 
model evaluation · Sahel precipitation · Local ensemble 
transform Kalman filter (LETKF) · Model uncertainty

1  Introduction

Studies have extensively documented that the Sahel—
the transitional zone between the Sahara Desert and the 
rainforests of Central Africa and the Guinea Coast—has 
experienced a severe drying trend since 1950 (Held et  al. 
2005; Hoerling et al. 2006). Observations have shown that 
a significant drying trend was initiated in the late 1960s 
and continued through the 1990s (e.g., Dai et  al. 2004; 
Nicholson 2013). Although there has been some recovery 
of precipitation since 1980s, the rainfall has not returned 
to the pre-drought level before 1960s (IPCC 2013). The 
drying (or recovery) is closely related to the drastic reduc-
tion (or increase) of the monsoonal rainfall in boreal sum-
mer (Giannini et  al. 2008). The monsoonal rainy period, 
also known as the West African Monsoon (WAM), is asso-
ciated with a seasonal reversal of prevailing winds in the 
lower atmosphere (southwesterly blowing from June to 

Abstract  The actual dynamics and physical mechanisms 
affecting the Sahel precipitation pattern and amplitude in 
the climate models remain under debate due to the incon-
sistent drying and rainfall variability/pattern among them. 
We diagnose the boreal summer rainfall pattern in the Sahel 
and its possible causes using short-range ensemble hind-
casts based on NCAR community atmospheric model with 
the local ensemble transform Kalman filter (CAM-LETKF) 
data assimilation. The CAM-LETKF assimilation was con-
ducted using 64 ensemble members with an assimilation 
cycle of 6-h. By comparing the superior and inferior groups 
within these 64 ensembles, we confirmed the influence of 
the Atlantic in the West Sahel rainfall (a robust feature in 
the ensembles) and a severe model bias resulting from erro-
neously modeled locations and magnitudes of low-level 
Sahara heat low (SHL) and African easterly jet (AEJ). This 
bias is highly related to atmospheric jet dynamics as shown 
in recent studies and local wave instability triggered mainly 
by the boundary-layer temperature gradient and amplified 
by land–atmosphere interactions. In particular, our results 
demonstrated that more accurate divergence and conver-
gence fields resulting from improved SHL and AEJ in the 
superior groups enabled more accurate rainbelt patterns to 
be discerned, thus improving the ensemble mean model 
hindcast prediction by more than 25 % in precipitation and 
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September), where humid air is blown in from the Atlantic 
Ocean and released over the Continent (Nicholson 2013). 
However, the causes and the factors controlling the spatial 
distribution of Sahel precipitation and its intensity remain 
unclear, including the cause of the recent partial recovery 
(Janicot et  al. 2015). Particularly, the associated WAM in 
boreal summer is characterized as a complicated ocean–
atmosphere–land coupling, which is not well understood 
yet.

Early studies focused on the influence of the overuse of 
natural resources by humans (e.g. Charney 1975), but later 
observational and modeling studies have related the Sahel 
drought with global sea surface temperatures (SSTs) (Fol-
land et  al. 1986; Held et  al. 2005; Hoerling et  al. 2006; 
Zhang and Delworth 2006; Wang et  al. 2012) and land 
surface processes (Xue et  al. 1990, 2010a). The Atlantic 
Ocean has been long recognized as a major controlling fac-
tor of the WAM activity (e.g., Zhang and Delworth 2006). 
The drying over the Sahel during the boreal summer is 
affected by the anomalous interhemispheric Atlantic SST 
contrast, which is characterized by a more southerly posi-
tion of the Atlantic intertropical convergence zone (ITCZ). 
Knippers (2003) and Matthews (2004) have suggested that 
the long-term intraseasonal variability of the WAM may 
be remotely connected to phenomena as far away as the 
West Pacific warm pool through the Madden–Julian oscil-
lation. Zhang and Delworth (2006) further suggested that 
the Atlantic multidecadal oscillation (AMO) plays a pri-
mary role in determining rainfall over the Sahel. An AMO 
warm phase strengthens the boreal summer rainfall over the 
Sahel, whereas a cold phase diminishes it.

The important role of SSTs on the variability and pre-
dictability of west Africa rainfall has been reviewed in 
Nicholson (2013) and Rodríguez-Fonseca et  al. (2015). 
Recently, Wang et al. (2012) proposed that positive feed-
back occurs among the North Atlantic tropical SST, Sahel 
rainfall, and North Atlantic dust. They observed that the 
drying of the Sahel, which is linked to a cool North Atlan-
tic SST, is associated with periods of increased dust. The 
transport of dust over the Atlantic serves as positive feed-
back, which then further cools SSTs (Wang et al. 2012). 
In general, the observed twentieth-century record results 
from this drying trend and exhibits substantial inter-
nal variability. Aerosols may affect the interhemispheric 
gradient of SSTs, thereby changing ITCZ locations and 
precipitation (Chang et al. 2011). In addition, global cli-
mate model experiments have shown that tropical convec-
tion may shift (e.g., Xue and Shukla 1993) in response to 
altered vegetation and soil moisture conditions or enhance 
when subsurface hydrological processes (i.e., groundwa-
ter dynamics) exist in the models (e.g., Lo and Famiglietti 
2011). These previous works indicated a variety of poten-
tial contributions affecting the Sahel rainfall (Nicholson 

2013; Rodríguez-Fonseca et  al. 2015 and reference 
therein).

However, experiments in the third phase of Coupled 
Model Intercomparison Project (CMIP3) and the fifth 
phase of Coupled Model Intercomparison Project (CMIP5) 
using multimodel ensembles (MMEs) of forced green-
house gases have failed to simulate the patterns or ampli-
tudes of twentieth- and twenty-first-century African drying 
and rainfall variability (e.g., Roehrig et  al. 2013). These 
models even yield inconsistent results regarding the signs 
of future anomalies in the Sahel (IPCC 2007, 2013). The 
ensemble spread in the trend amplitude remains large in the 
Sahel (Roehrig et al. 2013). Several modeling studies have 
suggested that positive feedback resulting from land–sur-
face interactions and the atmosphere can amplify the cli-
mate response to forcings such as SSTs or solar variations 
(Doherty et  al. 2000). Furthermore, the projected rainfall 
may depend heavily on model resolution and parameteri-
zations, especially in regard to land–atmosphere interac-
tions and representations of convection (Cook 2008; Xue 
et al. 2010b). Current projections of climate change in the 
Sahel are inconclusive (e.g., Cook and Vizy 2006; Dou-
ville et  al. 2006; IPCC 2013). The reasons for contradic-
tions among models have not been determined (Xue et al. 
2010b; Roehrig et  al. 2013). A major possible cause is 
built-in model uncertainties associated with MMEs, such 
as higher degrees of warming and parametric uncertainty 
(James et al. 2014). The substantial disagreement between 
these model projections has indicated that certain fun-
damental mechanisms may be missing in the modeled 
dynamics (James et al. 2014). The model intercomparison 
in Roehrig et al. (2013) further indicated the need to sepa-
rate the issues related to model errors characterized by dif-
ferent time scales, e.g., slow (interannual and longer) and 
fast (interseasonal or shorter time scale) physical processes. 
Many systematic errors appear rapidly at the intraseasonal 
scale.

In order to better clarify the impacts of the uncertainties 
of the model dynamics, the ensemble simulations based 
on different initial perturbations within a single model 
can facilitate exploring the spread of model behaviors and 
dynamics and have been used commonly in weather fore-
casts (Zhang 2005; Qian et  al. 2013; Feng et  al. 2014, 
2015). A spread of model behaviors can statistically 
account for the uncertainties of a complex system. In this 
study, we performed 1-year short-range ensemble hindcasts 
initialized from the 6-hourly analysis ensemble prepared by 
an advanced data assimilation system, the local ensemble 
transform Kalman filter. With these slightly different initial 
atmospheric perturbations at each analysis time, we intend 
to isolate the precipitation biases in the Sahel related to the 
fast physical processes associated with the fast growing 
errors, independent of the low frequency impacts of North 
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Atlantic SSTs. This is the first attempt to determine pos-
sible error sources in the Sahel precipitation based on a sta-
tistically large amount of data-assimilated ensembles using 
the NCAR community atmospheric model/community land 
model while avoiding the additional model uncertainties 
introduced in MMEs (which are not so easy to quantify due 
to the large differences in the model physic/grid resolution/
parameters). The large number of single model ensembles 
lends us support to the uncertainties resulting from the 
dynamical instabilities.

The main objectives of this study are to (a) show that 
data-assimilated short-range ensemble hindcasts can be 
used to determine and quantify crucial uncertainties in cli-
mate models resulting from the fast physical processes; and 
(b) confirm that one key dynamic in modeling the Sahel 
precipitation may be the shifting of the low-level Sahara 
Heat Low (SHL) associated with the African easterly jet 
(AEJ) suggested in many previous studies (e.g., Biasutti 
et  al. 2009; Xue et  al. 2010b; Diallo et  al. 2013, 2014; 
Cook 2015). This approach can isolate an important source 
of model errors/uncertainties resulting from the dynamic 
processes triggered in the low-level boundary layer (BL) 
rather than other model uncertainties. To the best of our 
knowledge, this study is the first to clearly demonstrate and 
identify that the internal variability due to the fast process 
dynamics (within several months) can significantly con-
tribute to the uncertainty of a climate model in the Sahel 
precipitation. From these ensemble simulations, we con-
firmed the modeled location and amplitude of the SHL and 
AEJ are critical while their associated dynamics are influ-
enced by the temperature gradient in the low-level BL and 
enhanced by land–atmosphere interactions. This source of 
biases has been suspected in the previous MMEs (Biasutti 
et al. 2009) but cannot easily be identified.

The rest of the paper is organized as follows. Section 2 
describes the methods used in the current study. Section 3 
discusses the results of the ensemble simulations in 2000. 
Section  4 investigates the relevant land–atmosphere inter-
action, followed by the atmospheric circulation in Sect. 5. 
Finally, the discussion and conclusion are given in Sect. 6 
and 7.

2 � Methods

2.1 � Short‑range data‑assimilated ensemble hindcasts

We conducted the short-range ensemble hindcasts by using 
the NCAR Community Atmosphere Model (CAM3.5) 
with the Community Land Model (CLM3.5), a prognostic 
atmospheric model with detailed land–surface feedback 
within the Community Climate System Model framework 
(Gent et al. 2010). CAM3.5 is based on a global primitive 

equation model with 26 vertical levels. The model integra-
tion uses a finite-volume dynamical core and the horizontal 
resolution is approximately 2.5° longitude by 1.9° latitude 
(144 ×  96 longitude-latitude grid). CAM3.5 (the precur-
sor of the recently released CAM4 and CAM5) exhibits 
improvements in modeling of tropical convection, surface 
winds, Hadley circulation, tropical easterly winds, subtrop-
ical westerly winds, and related precipitation fields through 
new convective momentum transports (see Neale et  al. 
2008; Richter and Rasch 2008 for further details). CLM3.5 
has an improved hydrological cycle, particularly in its par-
titioning of global evapotranspiration and an improved 
annual cycle of total water storage and runoff (Oleson et al. 
2008; Stockli et al. 2008).

A local ensemble transform Kalman filter (LETKF, 
Hunt et  al. 2007) has been coupled with the CAM3.5/
CLM3.5 model and assimilates meteorological data 
every 6  h (Liu et  al. 2009, 2012), hereafter CAM-
LETKF. The dataset includes all operationally assimi-
lated observations used in DOE/NCEP Reanalysis II 
(Kanamitsu et  al. 2002), including vertical sounding 
temperature and wind profiles obtained from weather 
balloons, surface pressure observations obtained from 
land and sea stations, temperature and wind reports 
obtained from commercial aircraft, and wind vectors 
obtained from the satellite-based observation of clouds. 
An ensemble hindcast system with 64 members has been 
established using the CAM-LETKF analysis ensemble 
as the atmospheric initial conditions. Figure  1 shows 
the flowchart of the CAM-LETKF assimilation system. 
We note that except the moisture variable, all prognostic 
variables were updated at each analysis time. The mois-
ture is not updated because it directly linked with the 
precipitation. This ensures the precipitation mechanism 
in the ensemble hincasts can be initialized through the 
model dynamics rather than the direct assimilation. The 
detailed data-assimilated hindcast system has been dis-
cussed in Liu et al. (2009, 2012).

Fig. 1   Overview of the data-assimilated CAM3.5/CLM3.5 hindcast 
system
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A 6-hourly short-range ensemble simulation, initial-
ized from the CAM-LETKF analysis ensemble every 
6-h, is used to evaluate African precipitation in the boreal 
summer. We conduct the 6-hourly ensemble hindcasts for 
1  year from January 2000 to December 2000 in order to 
identify the short-term fast process affecting the dynam-
ics of African climate, independent from the well-known 
slow process resulting from the impacts of low-frequency 
North Atlantic SSTs. Year 2000 is chosen arbitrarily while 
the ensemble hindcasts can be used for any year. Although 
multi-year experiment can yield a more robust result, 1 year 
is sufficient to emphasize the particular dynamics discussed 
here. The short-range ensemble hindcasts are used to avoid 
issues related to unbalance, model spin-up, slow process 
dynamic and potential long-term climate drift. Also, distin-
guished from the other studies using long-range simulation 
initializing, these ensemble hindcasts contain natural vari-
ability brought in by frequent data assimilation and thus we 
referred it to short-range ensemble hindcasts. The current 
approach is unique and statistically crucial in determining 
the ensemble differences triggered by the 6-hourly pertur-
bations in the atmospheric field exclusively. Overall, we 
take the advantage of an existing CAM-LETKF system to 
generate the ensemble hindcasts and its quality has been 
evaluated in Liu et  al. (2011, 2012). Figure 2a shows the 
ensemble mean biases of precipitation comparing with 
the CRU data in August 2000. The model’s accumulated 
precipitation is used here. The largest model biases occur 
in the north part of South America and the Sahel, which 
extends to the Arabian Peninsula and south Asia. The distri-
bution of the global precipitation biases is quite consistent 

with the large ensemble spread among these ensembles 
(Fig. 2b).

We note that the difference among ensembles is impor-
tant since it represents the dynamical uncertainties which 
can quickly grow within several months. Aiming at perturb-
ing the dynamic/thermodynamic components of the initial 
conditions, some methods like breeding vectors (Toth and 
Kalnay 1993, 1997), singular vectors (Buizza et al. 1997) 
and ensemble transform perturbations (Wei et al. 2008), are 
commonly used for weather or climate ensemble predic-
tion. These approaches can effectively detect the uncertain-
ties related to dynamical/thermodynamic instability mecha-
nism. Due to the various characteristics of the perturbations 
from different ensemble initialization schemes, these initial 
perturbations can lead to different error growth and dif-
ferent performance of the ensemble prediction system. In 
terms of representing the short-term forecast errors, Bowler 
(2006) suggests that the ensemble Kalman filter is the best 
framework for generating initial condition perturbations. 
Studies with global ensemble prediction system show that 
different ensemble initialization schemes lead/converge to 
similar performance in the well-observed areas (e.g. North 
hemisphere), while methods using nonlinear models like 
the bred vector and EnKF perturbations exhibit better pre-
diction skill in tropics (Magnusson et  al. 2008; Buehner 
and Mahidjiba 2010).

The LETKF background ensemble is derived by using a 
nonlinear model and thus the growth of the ensemble pertur-
bations is dominated by nonlinear dynamical/thermodynamic 
instabilities. Also, assimilating observations reduces the dis-
crepancies among ensemble members. Similar to the breeding 

Fig. 2   a Precipitation biases 
of the 64 ensemble mean 
comparing with the CRU data in 
August, 2000. b Standard devia-
tion (ensemble spread) of the 64 
ensembles from (a)

(a)

(b)
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method, the LETKF is also regarded as a nonlinear approach 
to generate dynamically-related perturbations, except that the 
rescaling is done by assimilating observations compared to a 
constant rescaling factor used in the breeding method (Kalnay 
and Toth 1994; Corazza et al. 2003; Yang et al. 2006; Hoffman 
et al. 2009). The current approach is completely different from 
the MMEs, which intend to represent the model uncertain-
ties. We emphasize that the differences in dynamics, physics, 
initial conditions, boundary conditions, and resolution, and 
other minor differences among MMEs may further increase 
model uncertainty, which is difficult to quantify (James et al. 
2014). This approach also differs from that used in the CESM 
large ensemble climate project (https://wiki.ucar.edu/display/
ccsm/CESM+Large+Ensemble+Planning+Page), in which 
large members of long-term free model simulations that vary 
in initial perturbations resulting from random error are used. 
The large-ensemble climate project encompasses a substantial 
group of free model simulations without any constraints; by 
contrast, our 64 ensemble members are strongly constrained 
by observations over time through the short-range ensemble 
hindcasts initialized by frequently updated analysis ensemble. 
Thus, the modeled dynamics may not largely diverge from the 
observed dynamics. Direct comparisons with observations can 
be more effectively justified and any particular process which 
may lead to the poor performance of prediction can be eas-
ier diagnosed by using our ensembles than the CESM large 
ensembles and MMEs.

2.2 � Observational data

The Climate Research Unit (CRU) TS3.1 dataset is used in 
this study in addition to the short-range ensemble hindcasts. 

The CRU TS3.1 is the global dataset of the monthly grid-
ded 0.5° × 0.5° precipitation and temperature for the period 
1901–2009. The gridded dataset is based on archival data 
from more than 4000 weather stations distributed around 
the world. Each station observation was constructed based 
on anomalies from the mean of the period 1961–1990 for 
that station. The precipitation and mean temperature used 
here were interpolated directly from station observations as 
a function of latitude, longitude, and elevation. All results 
shown here remain unchanged when the Global Precipita-
tion Climatology Project (Adler et al. 2003), CPC Merged 
Analysis of Precipitation (Xie and Arkin 1996) and other 
version of CRU datasets were used as precipitation obser-
vations. This indicates the global model biases in the Africa 
are much larger than the disagreement among different 
observations and datasets.

3 � Results of the short‑range ensemble hindcasts 
in 2000

Figure  3 shows 1950–2009 time series of observed CRU 
TS3.1 rainfall (bars) and temperature (lines) departures 
based on the mean for July–September 1950–1990 (JAS, 
blue) and August only (red) over Sahel (20°W–37°E, 
10°N–20°N). The observed precipitation in the Sahel was 
highly correlated with the temperature variation (corr. is 
−0.70 and −0.84 for the period of 1990–2009 and 1950–
2009, respectively), indicating that the variability of Sahel 
precipitation is closely associated with Sahel temperature 
variability in recent decades. Although the Sahel precipita-
tion has gradually recovered from its very dry periods since 

Fig. 3   Time series of the 
observed CRU TS3.1 total rain-
fall (bars) and mean tempera-
ture (lines) departures based on 
the mean of 1950–1990 for JAS 
(July, August, and September) 
and August only over Sahel 
since 1990 (20°W–37°E, 
10°N–20°N). Correlation is 
−0.70 and −0.84 for the period 
of 1990–2009 and 1950–2009, 
respectively

https://wiki.ucar.edu/display/ccsm/CESM%2bLarge%2bEnsemble%2bPlanning%2bPage
https://wiki.ucar.edu/display/ccsm/CESM%2bLarge%2bEnsemble%2bPlanning%2bPage
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late 1980s, lower-than-average precipitation and higher 
temperatures in Sahel still occurred in 14 out of 20 years 
after 1990.

The forward CAM3.5/CLM3.5 results are used here 
instead of the analysis fields. We sorted the 64 members 
into 16 groups based on the root-mean-square errors of 
precipitation/temperature in African continent compared 
with the CRU TS3.1 dataset (the errors between model 
results and the interpolated observation) in August 2000. 
All model comparisons made in this study are based on 
the average of the whole African continent for consist-
ency although the major biases occur in Sahel (discussed 
later). Considering the whole African continent allows us to 
evaluate the distribution of biases and the associated atmos-
pheric circulation difference which is not confined to the 
Sahel only. Group 1 exhibited the minimum error, whereas 
Group 16 exhibited the maximum error. The results were 
extremely robust regardless of the observational datasets 
used for comparison. Eighty percent of the annual rainfall 
in the Sahel occurs during the 3-month period of July–Sep-
tember (Lebel et al. 2003). August is the wettest month and 
it contributes disproportionately to the interannual variabil-
ity (Nicholson and Palao 1993). Hereafter, we only focus 
on August 2000 since the WAM often onsets in June and 
reaches its matured phase in August, resulting in the most 
robust model–data comparison in the precipitation and tem-
perature that month.

The individual members within Groups 1 and 2 and 
Groups 15 and 16 are tabulated in Table 1 for precipitation 
and temperature, respectively (ranked based on the minimal 
to maximum errors). Many members in the group of the 
minimum (and maximum) error are the same. For example, 
member 4, 19 and 34 in the minimal error group 1 can be 
found for both precipitation and temperature fields (italic 
members in the Table 1); same as member 6 in group 16 
(maximal error). Approximately one half of the members 
of Groups 1 and 2 (and the members of Groups 15 and 
16) that exhibited the minimum (and maximum) error in 
either precipitation or temperature were the same mem-
bers (Table 1; bold members), indicating that more accurate 

simulations typically generate more accurate precipita-
tion and temperature fields and that both fields are closely 
connected. Better simulation in the precipitation field is 
often associated with better temperature simulation and 
vice versa. The settings of these ensembles were identical, 
except the 6-hourly atmospheric perturbations (wind vec-
tors, temperature, and surface pressure) during each data-
assimilation cycle. The classifications in Table 1 led us to 
select five superior and five inferior members that exhibited 
the best precipitation and temperature (minimum errors in 
both fields) from Groups 1 and 2 and the poorest precipita-
tion and temperature fields (maximum errors in both fields) 
from Groups 15 and 16, respectively. Figure 4a, b show the 
mean observed precipitation and temperature, respectively, 
based on CRU TS3.1 in August 2000. Figure  4c, d show 
the superior group of CAM3.5/CLM3.5 during the same 
period, and Fig.  4e, f show the inferior group. The mod-
eled rainbelt location and temperature distributions in the 
superior group were highly consistent with observations, 
except the strength of the modeled rainbelt was weaker and 
the modeled mean temperature was slightly cooler than 
those observed in the Sudanian Savanna. The modeled rain-
belt in the inferior group shifted northward in comparison 
with observations. All hindcasts appeared to have a sys-
tematically warm temperature bias in Egypt near the south 
coast of the Mediterranean Sea, although this warm bias 
decreased slightly in the superior group.

Figure 5a, c show the differences between the superior 
and inferior groups in mean precipitation and temperature, 
respectively, in August 2000. The ensemble means for pre-
cipitation and temperature are shown in Fig. 5b, d, respec-
tively. The two groups were significantly different by more 
than 60 mm in precipitation and 1.5 °C in temperature in a 
large area (particularly North Africa), confirming the large 
ensemble spread in the Sahel seen in Fig. 2b. The precipita-
tion difference was comparable to the overall August mean 
precipitation variability in the Sahel (Fig. 3). These results 
suggested a large model uncertainty in this region and 
implied a significant difference in atmospheric responses 
and dynamics among these members even though the 

Table 1   List of individual 
members in the first (and 
the last) two groups with the 
minimum (and maximum) error 
in precipitation and temperature

Group 1 is the group of the minimum error and group 16 is the group of the maximum error. The italic 
numbers appearing in Groups 1 (and 16) are the overlapping members for both precipitation and tempera-
ture. The bold numbers mark members that appeared in both precipitation and temperature when Groups 1 
and 2 (and 15 and 16) were considered

No. Group 1 Group 2

Precipitation 34 19 61 4 60 42 48 43

Temperature 19 4 34 43 32 62 21 48

No. Group 15 Group 16

Precipitation 40 20 15 17 50 6 33 31

Temperature 31 59 50 53 45 15 20 6
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ensemble hindcasts are forced using the same surface 
boundary conditions and settings. The detailed error distri-
bution of these ensembles is presented in rank histograms 
of precipitation and temperature in Fig. 6a, b, respectively.

Based on these ensembles, we further analyzed the prob-
ability of error estimation for the Sahel precipitation. A 
significant mean bias of 88 mm in precipitation and 3  °C 
in temperature for Africa was observed in comparison with 

the CRU TS3.1 dataset (solid lines in Fig. 6). In addition, 
the model spread (the standard deviation was 10.15  mm 
and 0.16 °C for precipitation and temperature, respectively) 
was much smaller than the mean bias (dashed lines in 
Fig. 6), indicating that the short-range ensemble hindcasts 
retained various systematic model biases. Some inher-
ent model biases cannot easily be corrected. However, the 
range of the model spread was large (approximately 50 mm 

Fig. 4   Mean precipitation 
and temperature based on the 
observed CRU TS3.1 dataset 
a precipitation and b tempera-
ture; c, d are the same as a, b 
but from the superior group of 
CAM3.5/CLM3.5; e, f are the 
same as a, b but from the infe-
rior group of CAM3.5/CLM3.5
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in precipitation and 1 °C in temperature). These differences 
in the model spread revealed that the modeled mean rain-
belt might generally shift toward the Sahara desert, possi-
bly because of the northward shift of the modeled ITCZ in 
Africa. This particular bias can lead to an erroneous inter-
pretation if the uncertainty is not carefully quantified and 
identified in the long-term integration.

By comparing the error introduced by any ensemble 
member with the ensemble mean error, we may quantita-
tively define the error reduction/increase for each member, 
i.e., (εm − εEM)/εEM, where εm is the error for any individual 
member m and εEM is the ensemble mean error. The optimal 
simulation in Group 1 can reduce the mean systematic error 
in precipitation by up to 25 % and that in temperature by 
16 %. These results were consistent with the error ranking 
in Table 1 and motivated us to further investigate how these 
better rainbelts could be achieved in the superior hindcasts.

4 � Land–atmosphere interaction

Our analysis showed that modeled precipitation and tem-
perature in the Sahel can differ substantially in structure 
with the same model setup and configuration. We first 
investigated whether this large difference resulted from 

land–atmosphere interactions. The Sahel region is located 
in a transition zone between wet and dry climates where 
the atmosphere and land surface are strongly coupled (e.g., 
Entekhabi and Rodriguez-Iturbe 1994; Eltahir 1998; Koster 
et al. 2004; Xue et al. 2010a). In other words, land–atmos-
phere interactions may exert a substantial impact on pre-
cipitation anomalies. However, a comprehensive under-
standing of the land–atmosphere interactions and feedback 
system in the Sahel has yet to be attained. The short-range 
ensemble hindcasts indicated that soil moisture exhibited 
positive responses to rainfall and was likely linked to the 
difference between the superior and inferior groups.

Figure 7a shows that the pattern of soil moisture differ-
ences between the superior and inferior groups resembles to 
the pattern of precipitation differences as shown in Fig. 5a. 
Less (more) soil moisture in the superior group was associ-
ated with less precipitation north (south) of 15°N. The gen-
eral pattern of soil moisture differences between the supe-
rior and inferior groups was also similar to the pattern of 
the latent heat flux differences (Fig. 7b) due to the decreased 
(increased) evaporation north (south) of 15°N in the supe-
rior group. In the superior group, the reduction in the total 
turbulent heat flux north of 15°N caused by decreases in 
soil moisture tended to reduce the net surface radiation 
because of warmer surface temperature. The warmer surface 

Fig. 5   a Mean precipitation 
and c mean temperature differ-
ences between the superior and 
inferior groups in August 2000, 
and the mean of 64 ensemble 
members in b precipitation and 
d temperature in August 2000
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temperature and enhanced upward longwave radiation 
simultaneously reduced the atmospheric water vapor con-
tent (not shown here). Thus, precipitation north of 15°N was 
significantly reduced in the superior group.

In addition, we can find the change in latent heat flux 
(evaporation) dominated the total turbulent heat flux 
(Fig.  7d) at the surface in the ensembles as expected. 
The pattern of sensible heat flux anomalies (Fig.  7c) was 

not similar to that of the latent heat flux (Fig.  7b), possi-
bly because of the impacts of cloud and net radiation. The 
Bowen ratio was substantially different in central to eastern 
Africa within 15°N–30°N between the superior and inferior 
groups (Fig.  8). The largest precipitation difference was 
observed in this region. In the superior group, the sensible 
heat flux was significantly larger than the latent heat flux 
(higher Bowen ratio), but in the inferior group, the Bowen 
ratio was small. In all other regions, the general patterns of 
the Bowen ratio were quite similar. The results shown in 
Figs. 7 and 8 clearly indicated the immediate response of 
land processes (positive feedback) to the simulated precipi-
tation in the superior and inferior groups.

Although the positive land–atmosphere feedback ampli-
fies the precipitation differences locally as shown in Fig. 7, 
we did not expect the difference in precipitation patterns 
between the superior and inferior groups to match the dif-
ference in temperature between the two groups exactly 
because other systematic biases may have existed and could 
not be easily identified here. For example, the major bias in 
the mean modeled temperature pattern was located near the 
south coast of the Mediterranean Sea, where warm biases are 
commonly observed in the ensembles (comparing Figs. 4b, 
5d). Although the superior group exhibited a slightly bet-
ter temperature field than the inferior group in this region 
(perhaps because of the improved rainbelt in the south), the 
improved result seemed not to be fully related to the domi-
nant cause of the precipitation and temperature biases.

These results suggested that the thermodynamic land–
atmosphere coupling in both Sahel and north of the Sahel 
(north of 15°N) is related to the significant differences in 
precipitation and temperature between the superior and 
inferior groups. We note that the only difference in these 
ensemble hindcasts was the initial atmospheric conditions. 
Every 6-h, the CAM-LETKF system updated the ensemble-
hindcasts with flow-dependent analysis corrections. These 
corrections are related to the atmospheric instability in the 
underlying flow and the distribution of observation. Thus, 
the ensemble differences can be constrained and appear in 
the dynamically sensitive areas. The atmospheric model 
passively drove the land model through two-way coupling. 
This implied that the role of land–atmosphere interactions 
in this region, in the current ensemble hindcasts, exerted 
more of an amplification rather than a triggering effect. 
The triggering of land–atmosphere amplifications likely 
occurred in low-level atmospheric fields.

5 � Atmospheric circulation

Because the superior group exhibited considerably fewer 
systematic errors (improving  25  % in precipitation and 
16  % in temperature), we further evaluated whether any 
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significant changes in the atmospheric circulation among 
the ensembles occurred; in particular, the differences 
between the superior and inferior groups. The left panel 
of Fig. 9 shows the divergence superimposed by the asso-
ciated wind field at (a) 850 mb, (c) 600 mb, and (e) 200 
mb for the superior group in August 2000. The differences 
between the superior and inferior groups are shown in the 
right panel: (b) 850 mb, (d) 600 mb, and (f) 200 mb. These 
differences are of the same order as the mean fields, indi-
cating that significant changes indeed occurred in the mean 
atmospheric fields.

Based on the wind field at 850 mb, we see the low-level 
westerlies (or called southwesterly monsoon flow) origi-
nate in the Gulf of Guinea and transport northwestward 
(Fig.  9a), feeding on moisture advected from the tropical 
Atlantic. This is confirmed in Fig. 10a, b, showing the SST 
(color) and sea level pressure (SLP) in August 2000 in the 
superior and inferior groups, respectively. Since the model 
is forced by the oceanic SST, the dataset of National Oce-
anic and Atmospheric Administration optimum interpola-
tion SST analysis (Hurrell et  al. 2008) used in the CAM-
LETKF system is presented here. The modeled SLP is 
superimposed by contours in Fig.  10a, b. The difference 
of SLP between these two groups is also shown (color) 

in Fig. 10c, superimposed by the 850 mb wind vector dif-
ference. Note that the difference of SLP is very similar to 
the difference of surface pressure (not shown here). The 
use of SLP rather than surface pressure is mainly due to 
its smoother transition in the ocean–land interface. We 
can clearly see no significant difference above the ocean 
while a noticeable difference can be found just north of the 
Sahel, leading to the differences in the 850 mb wind vec-
tors. The humid air south of the ITCZ arises as the south-
easterly trades cross the Equator and takes on a westerly 
course (Nicholson and Webster 2007), as shown in Fig. 9a. 
The moisture is driven by the boreal summer ocean–con-
tinent temperature contrast, which causes a substantial 
change in direction regarding the large-scale flow, driving 
ocean moisture far inland and causing the summer African 
rainfall.

The westerly monsoon flow of WAM can be seen mostly 
in the low levels of the troposphere in Fig. 9a (not seen at 
600 and 200 mb). This westerly jet (the African westerly 
jet, AWJ) is strong at 850 mb and typically extends into the 
midtroposphere in boreal summer (Nicholson and Webster 
2007). Figure 9b shows the AWJ in the superior group is 
much weaker than that in the inferior group, making the 
largest difference at 850 mb. This AWJ variation has been 

Fig. 7   Differences between the 
superior and inferior groups in 
a soil moisture, b latent heat 
flux, c sensible heat flux, and d 
latent and sensible heat flux in 
August 2000
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strongly linked to the interannual variability of West Afri-
can rainfall. The differences in the ocean and South Africa 
are almost inappreciable, confirming that the model con-
sistently simulates the impact of the Atlantic Ocean on the 
WAM to drive the AWJ regardless superior and inferior 
groups (but the strengths vary). This is further supported 
by the difference of the meridional surface temperature 
(contours) and SLP (color) gradients between the superior 
and inferior groups (Fig. 10d). The meridional surface tem-
perature (or SLP) gradient is calculated by the meridional 
surface temperature (or SLP) difference divided by the grid 
distance in meter. The contour intervals are 2 × 10−6 °C/m 
(negative is dashed and positive is solid). No substantial 

differences can be found at the ocean surface, suggesting 
the consistent ocean driving forcing among these ensem-
bles and the oceanic influence (related mostly to the inter-
annual variability which is not addressed here) does not 
seem to be the dominant forcing that triggered the ensem-
ble differences. However, significant differences appear 
more likely in the lower troposphere of Sahel.

In the superior group, the AEJ could be seen at 600 
mb but not clear at 850 mb (the observed maximum was 
near 600–650 mb in the midtroposphere) in Fig.  9a, c. It 
is closely connected with the development and propaga-
tion of wave disturbances (e.g., the African easterly wave) 
over West Africa (e.g., Burpee 1972). The enhanced AEJ in 
the superior group comparing with the inferior group was 
associated with the increase of convergence in the band 
between 7°N and 15°N (Fig. 9b, d), potentially resulting in 
an enhanced precipitation found in Figs. 4 and 5. The mod-
eled strength and location of the AEJ seemed to play a cru-
cial role in modulating the divergence field at 850 mb and, 
thus, linked with the systematic precipitation and tempera-
ture biases in CAM3.5/CLM3.5. This was consistent with 
the upper troposphere divergence in the Sahel (Fig. 9e) and 
associated with a weakened tropical easterly jet (TEJ) in 
the superior group.

The comparisons of August precipitation with obser-
vation in Figs.  4 and 5 showed that the largest precipita-
tion region (the typical tropical rainbelt) could only be 
accurately reproduced in a few of the ensembles (i.e., the 
superior group). The primary rain-producing mechanism in 
August is the strong core of the ascent between the axes 
of the AEJ and TEJ, which controls the large-scale tropical 
rainbelt in the boreal summer (Nicholson 2009). Figure 9 
indicated that the modeled ensemble mean (or particularly 
the inferior group) AEJ and TEJ generally shifted north-
ward because the TEJ is too strong near equator and the 
AEJ is too weak at north, producing erroneous rainfall in 
the Sahara rather than in the central and southern Sahel 
(10°N–15°N). These jets’ location dominated the band of 
divergence and convergence, suggesting that the jet dynam-
ics directly affect precipitation in the Sahel in August.

The observed main rainbelt was located slightly south of 
the ITCZ, which is characterized by surface convergence 
(Fig.  9). From the SLP difference between the superior 
and inferior groups (Fig. 10c), we can see a strong anoma-
lous pressure high, which corresponded to a reduction in 
the SHL, occurred north of 15°N in the superior group and 
was associated with anticyclonic wind fields resulting from 
the enhanced AEJ in the superior group. Thus, in the supe-
rior group, this anomalous circulation pattern enhances the 
precipitation in the Sahel with reduced precipitation in the 
Sahara, shifting the main rainbelt southward to the correct 
location. Interestingly, similar southward shifting bias of 
SHL was also reported in the regional model (Diallo et al. 

Fig. 8   Spatial patterns of the Bowen ratio for the a superior group 
and b inferior group. A log scale is used to emphasize the broad range 
of the Bowen ratio
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2014) and global model (Vellinga et  al. 2013), indicating 
a possibly consistent structure uncertainty in the model 
dynamics.

This analysis prompted a key question: what causes the 
shifting of the AEJ and changes the SHL in the ensem-
ble hindcasts? Many previous studies have proposed that 
these changes result from the land surface (e.g., Gian-
nini et  al. 2008). Our analysis in Sect.  4 suggested that 
land–atmosphere interactions may only serve as an ampli-
fier rather than as the actual cause. Moreover, the rainfall 
and surface temperature variability is extremely sensi-
tive to the modeled vertical structure of the atmosphere, 
where the divergence field plays a key role in precipitation 
(Nicholson 2009). Figure 11a shows the distribution of the 

meridional temperature gradient in August along 12.5°N 
in the superior group, which indicates a clear temperature 
gradient maximum in the lower troposphere over Africa 
(15°W–50°E). The positive temperature gradient extended 
from the surface to 600 mb. Above 600 mb, the tempera-
ture gradient was reversed by a weak negative gradient. 
Figure  11c shows the differences in the meridional tem-
perature gradient between the superior and inferior groups. 
The largest difference (and probably the only difference) 
clearly resulted from the low-level BL over Africa, where 
land–atmosphere interactions occur (900–700 mb approxi-
mately). This further confirms that land–atmosphere feed-
back may play a crucial role in amplifying unstable modes 

Fig. 9   Divergence superim-
posed by the associated wind 
field at a 850 mb, c 600 mb, and 
e 200 mb for the superior group 
in August 2000. The differences 
between the superior and infe-
rior groups are shown at b 850 
mb, d 600 mb, and f 100 mb
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in the low-level BL, resulting in large differences in the 
temperature gradient and zonal velocity.

Figure  11b, d show vertical sections of the zonal 
velocity averaged over West Africa (15°W–5°E) for 
the superior group and the difference between the supe-
rior and inferior groups, respectively. The TEJ (centered 
at 200 mb) and a weak AEJ (centered at 600 mb) were 
observed in the superior group (Fig.  11b). The AEJ is 
geostrophic because of the existence of a positive sur-
face temperature gradient, which, according to the ther-
mal wind relation, induces easterly shear over the surface 
monsoon westerlies. The enhanced AEJ in the superior 
group (compared with the inferior group, see the differ-
ence in Fig. 11d) was initiated by the strong vertical shear 
generated at approximately 800 mb, which is consistent 
with the largest temperature gradient. These results indi-
cated that the low-level temperature perturbation was 
amplified and increased through local land–atmosphere 
feedback, resulting in the major differences between the 
superior and inferior groups. The large differences in the 
atmospheric temperature gradient influenced the location 
and magnitude of the AEJ and, thus, affected the loca-
tion and strength of the SHL. Because the changes in the 
AEJ and SHL can cause significant changes in low-level 
heating (Cook 1999), the better atmospheric circulation 
in the superior group may have facilitated more accurate 

divergence and convergence fields, thus resulting in better 
rainbelt location through a positive feedback.

6 � Discussion

Precipitation in the Sahel has drawn a considerable amount 
of attention in the recent decades because of the well-
known Sahel drought. Several mechanisms have been pro-
posed by researchers such as Neelin et  al. (2003), Chou 
and Neelin (2004), Held et al. (2005), and Giannini et al. 
(2008). However, neither the SST nor the land–sea thermal 
contrast alone can straightforwardly explain model varia-
tions/uncertainties in the future trends predicted for rainfall 
in the Sahel. Based on the CMIP3 model results, Biasutti 
et  al. (2009) suggested that the discrepancy in the model 
projections for twenty-first-century Sahel precipitation are 
directly related to the variability of SHL anomalies at inter-
annual to centennial time scales. Without using a long-term 
integration, our diagnosis of ensemble hindcast in 2000 
supported that more accurate prediction of the location and 
amplitude of the SHL associated with the AEJ improved 
predictions of boreal summer Sahel rainfall by more than 
25  % in precipitation and 16  % in temperature (compar-
ing the optimal simulation in the Group 1 and the ensem-
ble mean). This is also consistent with the recent model 

Fig. 10   a SST (color) and SLP 
in August 2000 for the superior 
group. The SLP is superim-
posed by contours. b Same as 
a but for the inferior group. c 
SLP difference (color) super-
imposed by the 850 mb wind 
vector difference between the 
superior and inferior groups. d 
The difference of meridional 
SLP (color) gradients between 
the superior and inferior groups 
superimposed by the meridional 
surface temperature gradient 
(contours with contour interval 
2 × 10−6 °C/m, negative is 
dashed and positive is solid)
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intercomparison of Xue et  al. (2010b), which found that 
the evolution of the WAM precipitation is closely related 
to the enhanced Sahara mode (i.e., SHL discussed in our 
study) and the weakened Sahel mode. Our results further 
show that, even using the same CAM3.5/CLM3.5 with the 
same surface boundary condition, the model uncertainty 
resulting only from the breeding of atmospheric instability 
can be large enough to trigger the significant change of jet 
strength and SHL location, nevertheless the long-term inte-
gration in the CMIP3 and CMIP5 models. Without serious 
consideration of the internal variability within the model 
dynamics, any conclusions about the future projection of 
the Sahel rainfall should be made with caution.

It has been well-known that these atmospheric jet 
dynamics may alter the location and amplitude of the SHL 
at all scales (Ramel et  al. 2006) and may thus be linked 

to the location of convergence at low levels (Biasutti 
et  al. 2009). Our diagnostics show that these characteris-
tics are the key to reduce the individual model uncertainty 
and can explain a large portion of the discrepancy in our 
short-range ensemble hindcasts of precipitation. Ocean 
variability or anthropogenic forcing is not the only factor 
modulating rainfall variability in the Sahel according to 
our short-range ensemble hindcasts which have unchanged 
surface boundary conditions. Rather, the key factor is 
the coupling between the circulation associated with the 
SHL and the ascent associated with the tropical rainbelt 
(divergence/convergence). Tomas and Webster (1997) sug-
gested that the AWJ results not only from the WAM but 
also from an inertial instability mechanism because of a 
cross-equatorial pressure gradient from the South Atlantic 
High that leads to off-equatorial convection in the lower 

 

(a) (b)

(c) (d)

Fig. 11   Vertical cross section of the meridional temperature gradient 
at 12.5°N in August 2000 for a the superior group and c the differ-
ence between the superior and inferior groups. The vertical cross sec-

tion of the mean zonal wind over West Africa (15°W–5°E) in August 
2000 for b the superior group and d the difference between the supe-
rior and inferior groups
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level. This may have caused the modeled precipitation bias 
and the large uncertainty in this sensitive region since the 
dynamical perturbation can easily trigger the evident dif-
ferences between the superior (reducing errors) and infe-
rior (enhancing errors) groups by the growth of instability 
errors (Cook 2015). Then, the land–atmosphere feedback 
and its coupling with the atmosphere may further influ-
ence precipitation patterns in this region (Entekhabi 1995; 
Cook 1999; Koster et al. 2004; Xue et al. 2010a) through 
changes in the SHL and AEJ. Comparing the differences 
in the superior and inferior groups indicated that the soil 
moisture and low-level BL temperature gradients may 
affect the location and magnitude of the AEJ, creating 
a favorable environment for jet instabilities to develop 
(Cook 1999, 2015). The model instability is likely the 
driving forcing that triggers large variances in the AEJ and 
the associated SHL dynamics, initiated from the low-level 
BL. The critical region to enhance the atmospheric insta-
bility may be that between the SHL and the tropical rain-
belt (the largest difference in Fig. 5).

In addition, our diagnosis indicated that changes in the 
SHL location and amplitude associated with changes in 
the AEJ may result from changes in the low-level BL tem-
perature gradient. As a consequence, the modeled atmos-
pheric divergence as a result of the different AEJ and TEJ 
greatly affect the modeled precipitation and temperature. 
The local land–atmosphere feedback may also enhance the 
temperature growth through the dynamical perturbations 
every 6-hourly even though the perturbations are small. 
The model uncertainty grows quickly in time due to the 
growth of the instability, triggered by the perturbations. 
Thus, the interactions among the WAM, ITCZ convection, 
and atmospheric jet dynamics change the modeled Sahel 
precipitation patterns. Local atmospheric jets have a more 
direct impact than does remote oceanic forcing, confirm-
ing the controlling role of the SHL in the disagreement of 
MMEs (Biasutti et al. 2009) and the model bias in the other 
models (e.g., Vellinga et al. 2013; Diallo et al. 2014). Fur-
ther refinement of the model dynamics is required to mini-
mize the biases associated with the SHL and AEJ in order 
to settle future climate projection disagreements.

MMEs have commonly been used in climate projec-
tions (e.g., IPCC 2007, 2013; Roehrig et al. 2013) and are 
powerful tools to account for structural uncertainties (either 
numerical or physical) arising from specific model errors 
in dynamic model-based predictions. The MMEs provide 
good estimates of model errors in terms of the ensemble 
model spread. However, MMEs may yield probabilistic risk 
forecasts of climate events (Palmer et al. 2005), particularly 
in some sensitive regions where the model uncertainty is 
large. Any structural uncertainty or model bias (i.e., errors 
introduced by the model design) is difficult to control when 
the spread of MMEs is too broad (e.g., Sahel precipitation 

in the climate model projections shown in IPCC 2007, 
2013). Estimating the built-in structural uncertainties of 
Sahel precipitation for each model is almost impossible 
in the CMIP3 and CMIP5 climate models because sub-
stantial contradictions exist in signs of future precipitation 
changes; some models are locked in a persistently dry sce-
nario, whereas others predict the opposite.

The short-range ensemble hindcasts used here can mini-
mize the structural uncertainty inherent in individual mod-
els because of the constraints of meteorological fields and 
the enhanced growth of physical instability (Yang et  al. 
2006). Therefore, the system can reduce and control uncer-
tainties more effectively than MMEs do (e.g., only notice-
able biases and large spreads in the Sahel region in Fig. 2). 
These ensembles provide an alternative to determining and 
quantifying model biases by constraining large ensembles 
using the observations. Our results confirmed the well-
captured influence of the Atlantic on rainfall in the West 
Sahel (very small uncertainty among the ensembles). A 
major source of systematic biases results from the errone-
ous location and magnitude of SHL and AEJ, where the 
relevant processes are likely amplified by land–atmosphere 
feedback and initiated from the low-level BL temperature 
gradient. A large spread of precipitation and temperature 
was observed in the ensembles within a few months despite 
the small spread in the initial atmospheric perturbations 
(approximately 5–10 % in the Sahel, not shown here). This 
was expected because subsequent rainbelt development 
was independent of the perturbations, and the precipitation 
and surface temperature were not assimilated in the system. 
This is a fast process dynamic within a few months so that 
the model biases occur quickly without long-integration of 
the climate model. The accuracy of precipitation is heav-
ily determined by model physics and dynamics. The cur-
rent approach assisted us in determining the model dynam-
ics and physics responsible for the bias and in quantifying 
uncertainty.

7 � Conclusion

The data-assimilated short-range ensemble hindcast sys-
tem was introduced to diagnose the Sahel precipitation 
based on the CAM3.5/CLM3.5 climate model. Using a sin-
gle model with identical surface boundary condition, the 
ensemble hindcasts effectively detected a source of struc-
tural uncertainties causing the Sahel precipitation and tem-
perature biases within a few months. No long-term integra-
tion is required to isolate this bias in the global CAM3.5/
CLM3.5. This approach is different from the commonly 
used SST/land forcing sensitivity model studies in that 
we can effectively detect the uncertainties only related to 
dynamical or thermodynamic instability mechanism within 
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a short time. The SST/land forcing sensitivity experiments 
may potentially trigger not only the instability mechanism 
discussed here, but also the other mechanisms which may 
complicate the analysis. The model uncertainties generated 
by the instability emphasized in this paper need to be sig-
nificantly reduced for any credential sensitivity study. Since 
we identify the biases are initiated from the low-level BL 
temperature gradient on land, an improved atmospheric BL 
model is likely required to minimize the model’s system-
atic biases.

This approach is also different from the MMEs and other 
ensemble experiments. The built-in structural uncertainties 
may be even larger in the MMEs, potentially introducing 
larger model diversity. In MMEs and other ensemble experi-
ments, the mean and variance of climate sensitivity are com-
monly used to produce a probability-density function and 
analyze the uncertainty, which depends heavily on the choice 
of realization. However, it is difficult to determine the cause 
of biases in MMEs if the ensemble spreads are too broad 
with large uncertainty in the region of interest. By compar-
ing the superior and inferior groups (corresponding to the 
different growth of errors), we demonstrate that the proposed 
ensemble hindcasts provide a useful diagnosis of model 
biases, specifically for biases closely related to the physi-
cal instability, based on quantitative measures of similarity 
with observations; it can potentially be used to obtain better 
weighted ensemble members, which may effectively reduce 
the model-data discrepancy in future climate projections.

The ensemble mean of the CAM3.5/CLM3.5 hind-
casts did not provide accurate precipitation and tempera-
ture predictions that were similar to observations. Further 
diagnosis of the ensembles showed that the precipitation 
and temperature biases resulted directly from atmospheric 
jet dynamics (such as the AWJ, AEJ, and TEJ) and associ-
ated wave disturbance triggered by the model instability in 
the atmospheric BL on land. In addition, amplification by 
land–atmosphere feedback was not negligible. Comparison 
with observations confirmed that the SHL and AEJ play an 
essential role in rainfall changes in the Sahel, particularly 
in central to northeast Africa, and might be the major cause 
of the inconsistency in the hindcast experiment. Further 
understanding of these mechanisms in the model dynam-
ics to minimize the biases can significantly improve model 
prediction and climate projection.

We also found the influence of remote ocean variabil-
ity and the land–sea thermal contrast did not control these 
characteristics since all surface boundary conditions were 
unchanged in the model ensembles. However, such processes 
might affect internal variability in the model dynamics in the 
long-term integration at the interannual to decadal scales; this 
requires further investigation next with caution. The overall 
warming of the ocean might further enhance oceanic evapora-
tion and, thus, fuel convection and rainfall over water at the 

expense of continental convection (Chou and Neelin 2004). 
We identified the location and magnitude of the SHL and AEJ 
controlled a major bias of precipitation and temperature pat-
terns, resulting from local divergence and convergence. This 
accounts for approximately 25 % of precipitation and 16 % 
of temperature biases in the model. Our study can provide a 
crucial guideline for modeling the Sahel rainfall variability in 
the future. Without serious consideration of the location and 
magnitude of the SHL and the AEJ within the model’s inter-
nal variability, any conclusions about the future projection of 
the Sahel drought should be made with caution.
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