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enhancing the enSo predictability 
beyond the Spring Barrier
Han-ching chen1, Yu-Heng tseng2*, Zeng-Zhen Hu3 & Ruiqiang Ding4

el niño-Southern oscillation (enSo) is the dominant interseasonal–interannual variability in the 
tropical Pacific and substantial efforts have been dedicated to predicting its occurrence and variability 
because of its extensive global impacts. However, ENSO predictability has been reduced in the 21st 
century, and the impact of extratropical atmosphere on the tropics has intensified during the past 
2 decades, making the ENSO more complicated and harder to predict. Here, by combining tropical 
preconditions/ocean–atmosphere interaction with extratropical precursors, we provide a novel 
approach to noticeably increase the ENSO prediction skill beyond the spring predictability barrier. The 
success of increasing the prediction skill results mainly from the longer lead-time of the extratropical–
tropical ocean-to-atmosphere interaction process, especially for the first 2 decades of the 21st century.

The El Niño-Southern Oscillation (ENSO) is the dominant interseasonal–interannual variability in the tropical 
Pacific and it exerts significant influence on weather and climate all over the world via atmospheric teleconnec-
tion1. Because of its global influence on the atmosphere and oceans, ENSO directly affects worldwide human life 
and the terrestrial and marine ecosystems. Substantial efforts have been dedicated to developing different forecast 
approaches to predict ENSO evolution several seasons in advance2–5. Previous studies used the Warm Water 
Volume (WWV) along the equatorial Pacific as a key precursor of ENSO6–9. However, WWV anomalies are not 
the only requirement for ENSO development1,10. It has been suggested that in addition to WWV condition, a 
series of westerly wind events/easterly wind surges (WWEs/EWSs) in the western–central Pacific play an impor-
tant role in the onset and maintaining of ENSO events11–14.

Interestingly, the ENSO forecast skill was noticeably reduced after 2000 in terms of the correlation and root 
mean square error (RMSE) (e.g., failures of forecast in 2012/13 and 2014/15 are good examples; most models pre-
dicted a strong ENSO event but these years ended up with a neutral or a weak El Niño conditions). Consistently, 
the strength of the seasonal footprinting mechanism has intensified during the past 2 decades15. The footprinting 
mechanism can trigger central Pacific types of ENSO events via the subtropical ocean–atmosphere coupling16–20. 
The amplified footprinting mechanism makes the ENSO more complicated and harder to predict because of 
changes in ENSO frequency and magnitude in the 21st century1,15. On interseasonal time scales, the spring pre-
dictability barrier (SPB) is still a large challenge that limits ENSO predictability, which tends to cause the model’s 
forecasting skill to decrease sharply when the prediction is made through spring21,22.

Recently, some statistical models based on the concurrent tropical oceanic and atmospheric conditions have 
been used to predict ENSO evolution with skillful prediction23–25. These models outperformed some dynamic 
models and suggested key roles for subsurface heat content evolution together with the modulation of WWEs/
EWSs over the central Pacific to improve ENSO predictability compared to that solely based on the WWV. 
Although the equatorial atmosphere and ocean coupling is crucial in ENSO evolution, the prediction skill of 
ENSO is limited if the predictors are only confined to the tropical or subtropical Pacific Ocean1,26. ENSO evolu-
tion does not only rely on the tropical Pacific23,27–29. Some studies have suggested that the extratropical Pacific 
sea level pressure (SLP) anomalies (SLPAs) during precedent winter over both the North and South Pacific, inde-
pendent of the low-frequency WWV contribution, can modulate ENSO evolution via a footprinting-like mech-
anism1,15–18,30. In addition, precursory signals from other oceans, such as the Atlantic and Indian Oceans, can 
also help to trigger ENSO events via atmospheric teleconnection31,32. Possible ENSO key predictors and their 
influencing routes are summarized in Fig. 1.

To enhance the reliability in predicting ENSO events, here we will include both tropical (WWV, WWEs/
EWSs) and extratropical factors and their interactions. Thus, a novel ENSO prediction model (EPM) combining 
the tropical status and extratropical ocean–atmosphere interaction is derived here to demonstrate the success in 
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increasing 6- to 10-month lead prediction skill beyond the SPB and to explain the dynamics behind the model. 
This improvement was especially noticeable in the first 2 decades of the 21st century.

Results
impact of extratropical atmospheric forcing on enSo. Previous studies suggested that the extratrop-
ical atmospheric forcing is mostly a stochastic process16,17,33. However, some recent observational and modeling 
studies have suggested that the atmospheric variability outside the tropical Pacific has a significant influence on 
the onset of ENSO events, including the impact of atmospheric variability over the North Pacific16–20,27,34–36 and 
the South Pacific37–41. Signals in these extratropical atmospheric variabilities have been found to be useful as a 
major precursor for ENSO occurrence16,28,29,36,38,41,42.

Figure 2 shows the correlations of winter (November–March) sea surface temperature (SST) and SLP anom-
alies with the Niño3.4 index (defined as the averaged SST anomalies (SSTAs) over the region 170°–120°W, 5°S–
5°N) 1 year later. A significant SLPA precursor signal appeared in both the North and South Pacific. The SLPA 
precursor signal and corresponding SSTAs in the North Pacific presented a typical North Pacific Oscillation 
(NPO)-like pattern43,44, a north–south dipole of SLPAs, whereas the SLPAs and SSTAs in the South Pacific show 
a pattern similar to the Pacific–South American pattern (PSA)45, characterized by a wave-like pattern of SLPAs. 
To identify the major impact of the extratropical ENSO precursors, the impacts of these two dipole modes over 
the North and South Pacific can be combined to construct an ENSO predictor according to extratropical telecon-
nection (EPEX) (see Methods).

Figure 3a illustrates the power spectrum of unfiltered EPEX index anomalies that were calculated via Fast 
Fourier Transform (green curve). We note that the EPEX index can be separated into two distinct time scales. The 
longer time scale is dominated by interannual variability with periods varying from 12 months to 7 years46,47. The 
other time scale exhibits higher frequency with a period of less than 12 months and it was associated with mid- 
and high-latitude stochastic variability16,17,33. To remove the high-frequency component and maintain the inter-
annual extratropical variability, an Ensemble Empirical Mode Decomposition (EEMD) (see Methods) is applied 
to decompose the EPEX index with different frequencies. The IMF1-5 of EPEX is composed of high frequencies (not 
shown) and the IMF6–10 of EPEX exhibits a lower frequency with a period from 12 months to 7 years (blue curve 
in Fig. 3a). The lead-lag correlation of the monthly EEMD filtered and unfiltered EPEX index, respectively, with 
the monthly Niño34 index is shown in Fig. 3b. For lead times of 6–10 months, the EEMD filtered (unfiltered) 
EPEX index shows a significant correlation with the Niño34 index, with a peak at a lead time of approximately 9 
(7) months29. The maximum correlation coefficient between the Niño34 index and the EEMD filtered EPEX (0.53) 
is clearly larger than that of the unfiltered EPEX (0.29). The relationship between ENSO and extratropical forcing 
is significant on the annual-to-interannual time scales, suggesting a potential of the extratropics to enhance the 
predictability of ENSO. Moreover, the impact of extratropical forcing varies strongly with seasons. The most sig-
nificant impact of extratropical forcing on the ENSO is in MAM (Fig. S1), consistent with the time scale discussed 
above.

To further demonstrate the impact of extratropical atmospheric variability on the ENSO variability, the lag 
correlations of SSTAs and SLPAs with the monthly EEMD filtered and unfiltered EPEX index are shown in Fig. 4. 
The lag correlation patterns of SSTAs and SLPAs are both similar to the SSTAs and SLPAs that are associated with 
ENSO28, and the relationship is stronger for the EEMD filtered EPEX than for the unfiltered EPEX. These results 

Figure 1. Schematic diagram of main ENSO predictors. The topographical mapping is based on 2‐Minute 
Gridded Global Relief Data (ETOPO2) topography and generated using Matlab R2018b. The Matlab script 
(https://www.asu.cas.cz/~bezdek/vyzkum/rotating_3d_globe/index.php#1b) is provided from Bezdek and 
Sebera (2013)69.
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support the previous arguments that the NPO-like or PSA-like atmospheric pattern associated with surface wind 
fields over the North or South Pacific can modulate SSTAs in the tropical Pacific and alter the ENSO evolution, as 
shown in the evolution of Fig. 4a–d (also e–h)16,17,27,29,36,41.

The subtropical SST pattern in the Northern Hemisphere is the typical footprinting of the Victoria mode 
(also called the Pacific meridional mode, PMM, for a regional domain)48–50 while the quadrupole SST pattern 
in the Southern Hemisphere is called the South Pacific meridional mode40,41,51. These SST patterns may persist 
until boreal summer (hereafter, the seasons referred to are those of the Northern Hemisphere) and subsequently 
increase the zonal SST gradient across the western–central tropical Pacific and then strengthen the anomalous 
westerlies (easterlies) along the equatorial Pacific to initiate an El Niño (La Niña) event29,41 (see the evolution 
in Fig. 4b–c,f–g, respectively). Finally, the equatorial Pacific SSTAs reach the peak as an ENSO event with a 
corresponding west–east dipole of SLPAs (called Southern Oscillation) after about 8 months, consistent with 
the lead-lag relationship in Fig. 3b (EPEX leads Niño34 index by 6–10 months)29. These results support that the 
extratropical teleconnection can be an important precursor to trigger ENSO events and to potentially improve the 
ENSO predictability, specifically beyond the time scale of SPB.

Figure 2. Correlation map of boreal winter (November–March) SST (shading) and SLP (contours) anomalies 
with the Niño3.4 index during the following boreal winter. The black dots indicate the correlation of SSTAs 
exceeding a 90% confidence level using a t-test. The SLPAs with correlations significant above the 90% 
confidence level are also shown. The four red boxes (from top to bottom: 175°–120°W, 50°–75°N and 180°–
135°W, 10°–30°N and 160°E–150°W, 25°–45°S and 180°–140°W, 50°–70°S) are used to defined the extratropical 
forcing index (EPEX).

Figure 3. (a) Power spectrum analysis of the unfiltered (green curve) and EEMD filtered (IMF6–10; blue curve) 
EPEX. Red noise (dashed red curve) and the 95% statistical confidence (solid red lines) for the IMF6–10 of EPEX 
are indicated. The vertical black line represents a period of 12 months. (b) Lead-lag correlation of Niño3.4 index 
with the unfiltered (blue curve) and EEMD filtered (red curve) EPEX. Maximum correlations are labeled (black 
dots).
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predicting the enSo beyond the Spring predictability Barrier (SpB). The WWV and WWEs/
EWSs associated with key tropical Pacific dynamics have been considered to be essential processes for the ENSO 
occurrence6,23,24. However, the extratropical ocean–atmosphere interaction commonly plays an active role in the 
onset of ENSO events. To demonstrate these key processes in enhancing the prediction skill, we constructed a 
multivariate linear regression model based on the tropical dynamics and extratropical ocean–atmosphere inter-
action, as discussed in the Methods. For example, a 6-month lead multivariate linear regression model can be 
constructed as follows:

EPM t month EP t EP t EP t( 6 ) (0 43 ( ) 0 22 ( ) 0 18 ( ))
(1)

O

P
WWV OA EX

σ
σ

+ = . + . + .

Figure 5a shows a 3-month running mean time series of the monthly EPM (red line) using the 6-month lead 
linear regression model overlaid with the observed 3-month running mean Niño34 index (blue line). The corre-
lation between predicted and observed Niño34 index was significant (R = 0.70) from 1981 to 2018. This 6-month 
lead hindcast skill was quantitatively similar to that based on the tropical condition only (Fig. 5c) and superior to 
that based on the WWV index (R = 0.57 in Fig. 5d). The WWV index was defined as the volume of water above 
20 °C isotherm in the equatorial Pacific region (5°S–5°N, 120°E–80°W).

For the 6-month lead prediction, the relative contributions of the tropical dynamics and the extratropical 
influence on the EPM suggested the tropical dynamics associated with WWV and WWEs/EWSs (EPWWV + EPOA) 
can capture most of the ENSO events (blue curve in Fig. 5b). The extratropical atmospheric influence (EPEX), in 
addition, can further provide useful information to enhance the hindcast skill (red curve in Fig. 5b). However, the 
improvement was limited, as expected. The EPEX leads EPWWV + EPOA by about 2–3 months. The longer lead-time 
of the extratropical precursors suggests that the hindcast skill improvement is beyond 6-months, and thus poten-
tially reduces the constraint of SPB.

To further examine the hindcast skill of EPM, we calculated the correlation and the RMSEs with different lead 
times in Table 1. Here, the EPM based on tropical dynamics only is presented as EPMTD, and the EPM considering 
tropical and extratropical precursors together is presented as EPMTD+EX. For all lead-time hindcast (6-month and 
longer), the EPMTD+EX had higher hindcast skill in terms of correlation and RMSE measurements than EPMTD 
and WWV index. The correlation of EPMTD+EX was 0.65 (0.61) for an 8-month (10-month) lead, while the corre-
sponding correlation was only 0.61 (0.52) for EPMTD and 0.51 (0.44) for WWV index. The RMSE skill also sug-
gested that the hindcast Niño34 index based on EPMTD+EX was generally better than that based on either EPMTD 
or the WWV index.

We also computed the percent correct metric, which is defined as the fraction of the observed events that are 
correctly predicted, in Table 1 to quantify the robustness of EPM for predicting ENSO events. Since 1980, the 
EPMTD+EX with 6-month lead was 92% percent correct for El Niño and 86% percent correct for La Niña. The 
missed 1987/1988 El Niño, which was a double-dip El Niño after the 1986/87 El Niño event, was reinforced by 
the strong and uninterrupted WWEs with decaying heat content in the central tropical Pacific. For the missed 
1995/96 La Niña, no significant EWSs and enhanced heat content exist with an unfavorable extratropical con-
tribution during the developing phase. The missed 2005/06 La Niña was a weak event that was associated with 
poorly pre-conditioned WWV and weak EWSs.

The false alarm rate metric, defined as the fraction of the predicted events that do not actually occur, is also 
shown in Table 1. Generally, the performance of EPMTD+EX was better than others in percent correct and false 
alarm metrics. The improvement in the hindcast skill of EPMTD+EX was more significant for false alarms, but it 
only slightly increased the skill of the percent correct for EPMTD+EX. This is because the evolution of accumulated 
WWV is necessary for an ENSO event, and the prediction models based on equatorial heat content (EPMTD+EX, 
EPMTD, and WWV index) easily capture the occurrence of an ENSO event using the existing WWV signal. 
However, the evolution of an ENSO event does not solely rely on the WWV condition, and other factors, e.g. 

Figure 4. Correlations of the SST (shading) and SLP (contours) anomalies based on the (a–d) unfiltered 
and (e–h) EEMD filtered EPEX at different lag time (SST and SLP anomalies lag EPEX). Only the correlations 
significant at or above the 95% confidence level are shown.
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extratropical forcing, are also important to determine the occurrence of an ENSO event. That is why the hindcast 
skill of the false alarm rate can be improved significantly when the tropical and extratropical precursors are all 
considered in EPM (EPMTD+EX), compared with that only the tropical dynamics are included in EPM (EPMTD).

EPM and hindcast skill in different prediction lead time. Hindcast skill is lower with a longer predic-
tion lead time4. To quantify the influence of the tropical and extratropical precursors on the lead-time, we further 
analyzed the correlation and RMSE between the observed 3-month running mean and the predicted Niño34 
index based on the WWV index only, tropical dynamics only (EPMTD), or tropical and extratropical precursors 
together (EPMTD+EX) with different lead-times (Fig. 6a,b). When we only consider the WWV index, the best 
hindcast skill appeared in the 5-month lead, which is consistent with the role of equatorial heat content in the 
recharge–discharge process9,52. If both of the WWV propagation and the ocean–atmosphere coupled feedback are 
included (EPMTD), the hindcast skill significantly increases for all lead times, especially for 1- to 6-month leads. 
For the EPM proposed here (EPMTD+EX), the hindcast skill further increases with 6- to 10-month leads because 
of the extratropical precursors, indicating that including the extratropical influence can significantly improve the 
ENSO forecast skill at a lead time of longer than 6 months. Moreover, the coefficients of EPWWV (blue bars), EPOA 
(red bars), and EPEX (yellow bars) shown in Fig. 6c confirm the relative contributions of each predictor. For 1- to 
3-month leads, the hindcast skill is mainly contributed by the ocean–atmosphere coupled feedback because the 
zonal surface wind change is almost simultaneous with the change of the Niño34 index, which is a typical feature 
of the Bjerknes feedback for the growth of ENSO events6,7,9,53. The contribution of the ocean–atmosphere coupled 

Figure 5. The 3-month running mean time series of the predicted Niño3.4 index (red line) generated by the 
6-month lead regression model based on (a) the tropical and extratropical precursors together (c) the tropical 
dynamics (EPWWV and EPOA only) and (d) WWV index overlaid with the observed Niño3.4 index (blue line). 
The vertical lines represent the peak year of El Niño events (red lines) and La Niña events (blue lines). (b) The 
time series of predicted Niño3.4 index contributed by EPM (grey shading), EPWWV + EPOA (blue curve) and 
EPEX (red curve).
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feedback decreases linearly with an increased lead-time. However, the contribution of eastward-propagating 
WWV reaches its maximum at a 3–5 months lead because the WWV propagation signal in the central Pacific 
leads the Niño34 index by 3–4 months23.

In contrast to the tropical precursors, the extratropical precursors have the largest contribution, with an 8- to 
10-month lead. Because the lead-time extends over 6-months, the influence of the tropical dynamics is decreased 
with increased impacts of the extratropical precursors over both the North and South Pacific. We note that the 
coefficients of EPEX are negative in the 1- and 2-month leads, which are possibly caused by the positive feedback 
between the PMM and ENSO. This result indicates that the PMM can trigger the central Pacific ENSO events15 
while, on the interannual timescales54, it can also be enhanced from the tropical forcing. Therefore, extratropical 
atmosphere forcing may trigger ENSO events by increasing the zonal SST gradient across the western–central 
tropical Pacific and then modulate the anomalous westerlies along the equatorial Pacific. Thus, the extratropical 
teleconnection can effectively improve ENSO prediction with 8- to 10-month leads.

Lead time

Percent correct (%)
El Niño (La Niña)

False alarm rate (%)
El Niño (La Niña) Correlation RMSE (oC)

EPMTD+EX EPMTD WWV EPMTD+EX EPMTD WWV EPMTD+EX EPMTD WWV EPMTD+EX EPMTD WWV

Six-month 92 (86) 92 (79) 83 (71) 39 (14) 39 (21) 47 (23) 0.70 0.70 0.57 0.70 0.70 0.84

Eight-month 83 (79) 83 (64) 75 (64) 38 (15) 50 (36) 50 (36) 0.65 0.61 0.51 0.76 0.80 0.90

Ten-month 83 (71) 75 (71) 75 (64) 38 (17) 50 (41) 47 (31) 0.61 0.52 0.44 0.80 0.89 0.96

Table 1. The hindcast skills according to percentage correct, correlation, and RMSE between 3-month running 
mean observed and predicted Niño34 index based on the WWV index only, tropical dynamics only (EPMTD), 
tropical and extratropical precursors together (EPMTD+EX) with different lead-times for the period of 1980–
2018. The percent correct is defined as the fraction of the observed events which are correctly predicted. The 
false alarm is defined as the fraction of the predicted events actually do not occur. The perfect score is 100% and 
0% for percent correct and false alarm rate, respectively.

Figure 6. (a) Correlation and (b) RMSE between 3-month running mean observed and predicted Niño34 
index based on the WWV index only (green curve), tropical dynamics only (EPMTD; blue curve), tropical 
and extratropical precursors together (EPMTD+EX; red curve) with different lead-times. (c) Coefficients of the 
multivariate linear regression model contributed by EPWWV (blue bars), EPOA (red bars) and EPEX (yellow bars) 
with different leading times. (d) Correlation between 3-month running mean observed and predicted Niño3.4 
index based on EPMTD+EX (shadings), EPMTD (contours) as a function of start month and lead time.
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Figure 6d shows the correlation between the observed and predicted Niño34 index based on EPMTD+EX and 
EPMTD as a function of start month and lead time. Overall, when the hindcast lead time is less than 6-month, the 
prediction starting in boreal spring (March, April, and May: MAM) had the lowest correlation while that starting 
in boreal summer (JJA) tended to have the greatest hindcast skills, i.e., the typical SPB. We note that the prediction 
skill based on EPMTD+EX (shading) showed a higher correlation than that based on EPMTD (contours), specifically 
when the prediction started in MAM and the lead time was longer than 7-month. The SPB of ENSO events were 
mainly generated by a strong seasonal modulation of the growth rate55, indicating the difficulty in overcoming 
the SPB when only the tropical dynamics are considered as a precursor. The long-lead relationship between the 
extratropics and ENSO variability could partially reduce the long-lasting concern of SPB in the ENSO prediction.

Previous studies found that the ENSO hindcast/forecast skill has been reduced for the first decade of the 
21st century4,21. Figure 7a shows the correlation between the observed and predicted Niño3.4 index based on 
three different schemes of the linear regression model with different lead times during 1980–1999 (dot-markers) 
and 2000–2018 (cross-markers). The difference in the ENSO prediction skill before and after 2000 can be easily 
observed. The maximum lead time for the WWV index (green curves) before 2000 (6 months) was longer than 
that after 2000 (3 months), which is consistent with previous studies that the WWV lead time changed from 
6–9 months in 1979–1999 to 3–4 months after 200021,56. Moreover, the hindcast skill (correlation) between the 
observed Niño3.4 and WWV index was much higher before 2000, which is consistent with the decadal change 
since 2000 that was shown in previous studies21,23. For the prediction model based on the tropical dynamics only 
(blue curves), the correlation between observation and prediction during 1980–1999 is also much higher. The 
correlation was 0.76 from 1980–1999 and only 0.60 from 2000–2018 with a 6-month lead, which is consistent 
with the decrease in the correlation between Niño3.4 and WWV indices after 200021,56.

When the new prediction scheme (EPM) was considered based on both the tropical dynamics and extratropi-
cal teleconnection (Fig. 7a, red curves), the hindcast skill was improved both before and after 2000. Although the 
hindcast skill was higher before 2000, the improvement in the hindcast skill was greater in 2000–2018 compared 
with that during 1980–1999. The relationship between the Niño3.4 index and extratropical forcing also decreased 

Figure 7. (a) Correlation between 3-month running mean observed and predicted Niño34 index based on 
the WWV index only (green curve), tropical dynamics only (EPMTD; blue curve), tropical and extratropical 
precursors together (EPMTD+EX; red curve) with different lead-times during 1980–1999 (dot-markers) and 
2000–2018 (cross-markers). The prediction result of Clarke and Van Gorder (2003) based on WWV and Indo-
Pacific winds for the period 1981–2001 is presented as grey curve with circle-markers. (b) Lead-lag correlation 
of Niño3.4 index with the EEMD filtered EPEX during 1980–1999 (red curve) and 2000–2018 (blue curve). 
Maximum correlations are labeled (black dots). (c,d) Show the coefficients of the multivariate linear regression 
model contributed by EPWWV (blue bars), EPOA (red bars) and EPEX (yellow bars) with different leading times 
during 1980–1999 and 2000–2018, respectively.
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after 2000, as shown in Fig. 7b, where the maximum lead time for the EPEX index in 1980–1999 (10 months) is 
longer than that in 2000–2018 (7 months) and the corresponding correlation coefficient decreased from 0.64 to 
0.49 after 2000. However, compared with WWV, the change in the extratropical forcing was relatively small and 
the prediction lead-time stayed at more than 7 months, and there was an improvement in the prediction skill after 
2000.

To further investigate the change of relative contribution in EPM, the coefficient of EPWWV (blue bars), EPOA 
(red bars), and EPEX (yellow bars) in different EPM lead-times before and after 2000 is shown in Fig. 7c,d. The 
maximum contribution of EPWWV occurred with a 6-month lead in 1980–1999 and with a 3-month lead in 2000–
2018. For 1980–1999, the contribution of the propagation of WWV to the hindcast skill was greater than the 
contribution of the extratropical atmospheric variability before the 8-month lead. On the other hand, the con-
tribution of the extratropical forcing in 2000–2018 was larger than the contribution of the propagation of WWV 
after a 6-month lead, indicating the increased importance of the extratropics in predicting ENSO after 2000. 
The hindcast skill is mainly contributed by the ocean–atmosphere-coupled feedback for a short prediction lead 
time (1- to 2-month), and the importance of the ocean–atmosphere-coupled feedback decreased linearly with 
increased prediction lead-time. These results suggest that the extratropical atmospheric precursors in both the 
North and South Pacific are important in predicting ENSO and can reduce the long-lasting concern about SPB in 
the first 2 decades of the 21st century.

To compare our EPM with other ENSO prediction models using tropical precursors, the prediction results 
from Clarke and Van Gorder57 based on the WWV and Indo-Pacific winds for the period 1981–2001 are shown 
in Fig. 7a. For a short lead time, the hindcast skill of their model was higher than that of EPM because they added 
eastern equatorial Indian Ocean wind stress to include the propagating signal of equatorial winds. However, when 
the lead time was longer than 8 months, the contribution of extratropical atmospheric precursors was more sig-
nificant and the hindcast skill of EPM was higher than the model presented by Clarke and Van Gorder57.

Extratropical signals have been suggested to improve the ENSO prediction. Boschat’s regression model based 
on JFM tropical WWV and extratropical SST precursors achieved a higher correlation score than the model that 
uses the JFM tropical WWV and zonal wind stress only for 1979–2008 (0.72 compared to 0.61 correlation)58. Our 
correlation score of the EPM prediction from JFM based on tropical dynamics only (EPMTD) and tropical and 
extratropical precursors together (EPMTD+EX) was 0.66 and 0.74 for 1980–2008, respectively, which is comparable 
with Boschat’s results.

The hindcast correlation of statistical models in “IRI ENSO Forecast”, presented on the International Research 
Institute for Climate and Society (IRI) website (https://iri.columbia.edu/our-expertise/climate/enso/), is further 
shown in Fig. S2 for 2002–2018. The hindcast skill of most statistical models was lower than the EPM either based 
on the tropical dynamics and extratropical ocean–atmosphere (EPMTD+EX) or based on the tropical dynamics 
only (EPMTD). Overall, the proposed EPM combining the tropical dynamics and extratropical forcing signifi-
cantly enhanced the ENSO prediction skill, particularly for a forecast with a long lead time. This suggests that the 
ENSO occurrences after 2000 may rely more on the ocean–atmospheric process resulting from the extratropical 
influence that was discussed earlier1,15.

The internal tropical dynamics, including the propagation of accumulated WWV via the recharge–discharge 
process and the ocean–atmosphere coupling, serve as a necessary precondition for the possible growth of ENSO 
events and they play a dominant role in the ENSO evolution1,14,23. Other remote precursors such as the extratrop-
ical atmosphere forcing are additional triggering forcing that could further suppress or enhance the final ENSO 
development through the equatorial ocean–atmosphere coupling1,10,23. When the sufficient preconditioned heat 
content exists at the equator, as determined by the tropical dynamics combined with the extratropical forcing, the 
tropical Pacific warming in Spring could develop into an ENSO event. However, the WWV was no longer a highly 
reliable precursor for ENSO after 2000 because of the La Niña-like background mean state and steeper equatorial 
thermocline tilt, which hampered the eastward propagation of WWV1,59,60. Thus, the role of WWV decreased and 
the ENSO prediction skill also declined. Some studies suggested that the variability of North Pacific atmosphere 
became more effective at initiating El Niño events after 1990s15,61. Moreover, the variance of the PMM associated 
with extratropical atmosphere forcing will increase in a warmer mean climate state62. These results supported 
the increasing importance of the extratropical precursors in predicting ENSO for the first 2 decades of the 21st 
century and in a global warming situation.

Data and Methods
observation and reanalysis data. In this study, several reanalysis datasets were used in constructing the 
statistical prediction model. Data from 1980 to the present were used. The ocean temperature data used in this 
analysis were the pentad global ocean data assimilation system (GODAS) on a 1/3° latitude × 1.0° longitude global 
grid63. The SST was defined as the temperature of the first layer of the ocean (taken at 5-m depth). The near-sur-
face wind data (0.995-sigma level) and sea level pressure data from the National Centers for Environmental 
Prediction and the National Center for Atmospheric Research (NCEP–NCAR) reanalysis project64 on a 2.5° × 2.5° 
horizontal grid resolution were used to analyze the ocean–atmosphere coupling and extratropical atmospheric 
variability teleconnection. The anomalies here are based on the climatology from 1980 to 2018. EPWWV, EPOA, and 
EPEX were estimated using pentad data (5-day average) and then averaged monthly to build the multivariate linear 
regression model. All comparisons are made on a monthly time scale.

Definition of ENSO events. In this study, the El Niño (La Niña) was defined as an event with a 3-month 
running averaged Niño34 index that was greater than half a standard deviation (smaller than negative half a 
standard deviation). We note that some of the weak ENSO events defined here are slightly different from the defi-
nition of the Climate Prediction Center (CPC) (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php) because different datasets and different periods of the climatological mean are used. We 
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chose the observed ENSO events based on the consensus of the definitions here and by the CPC. During the 
analysis period, there were 12 El Niño events (1982/83, 1986/87, 1987/88, 1991/92, 1994/95, 1997/98, 2002/03, 
2004/05, 2006/07, 2009/10, 2014/15, and 2015/16) and 14 La Niña events (1983/84, 1984/85, 1988/89, 1995/96, 
1998/99, 1999/00, 2000/01, 2005/06, 2007/08, 2008/09, 2010/11, 2011/12, 2016/17, and 2017/18).

enSo prediction model. The ENSO prediction model (EPM) was built as follows:

φ
σ
σ

β β β+ = + +EPM t m
m

EP t EP t EP t( ) ( )
( )

( ( ) ( ) ( ))
(2)

O

P
WWV OA EX1 2 3

The first two terms on the right-hand side are called “tropical dynamics”, including the predictors according to 
the propagation of WWV in the central Pacific (EPWWV) and the ocean–atmosphere feedback (EPOA); the third 
term, EPEX, is called the extratropical atmosphere forcing term. EPWWV, EPOA, and EPEX were normalized before 
inputting into the linear regression model. The coefficients β1, β2, and β3 were derived from the multivariate linear 
regression analysis, and they indicate the linear association between the predictors and observations, which may 
change with a different lead time. The monthly scaling function, m

m
( )
( )

O

P

σ
σ

, based on the ratio between the standard 
deviation of the observation (σO) and the prediction (σP) for the month (m) is applied to adjust the seasonal var-
iance of prediction to observational variance (i.e., signal ratio). Then, a statistical prediction model is built to 
predict ENSO based on different lead times (ϕ) to evaluate the hindcast skill.

Extratropical ENSO precursors index. The extratropical ENSO precursor index is represented by a combination 
of SLPAs that were averaged over the significant positive and negative correlation centers, as shown in Fig. 2. Four 
significant regions were chosen because the others are dependent28; the red boxes from top are N1 (175°–120°W, 
50°–75°N), N2 (180°–135°W, 10°–30°N), S1 (160°E–150°W, 25°–45°S), and S2 (180°–140°W, 50°–70°S). The 
index is defined as follows:

= − + −EP SLPA SLPA SLPA SLPA( ) ( ) (3)EX N S sN1 2 2 1

An EEMD filter is performed to remove the high-frequency component while maintaining the interannual 
extratropical variability. In this study, the first ten IMFs are obtained for EEMD and only IMF6–10 of EPEX, which 
exhibits a lower frequency with a period from 12 months to 7 years, is used to represent the interannual component  
of EPEX.

Tropical ENSO precursors index. The tropical dynamics term EPM is constructed by a function of WWV in the 
central Pacific [EPWWV(t)] and the ocean–atmosphere feedback [EPOA(t)]23. The WWV function is defined based 
on the feature of eastward propagation WWV as follows:

α α

α

= − + −

+

° °

°

EP t D a t pentads D a t pentads

D a t

( ) 20 ( 5 ) 20 ( 3 )

20 ( ) (4)

WWV W

W

1 180 2 170

3 155

D20a is the 20 °C thermocline depth (D20) anomaly that is averaged between 2°S and 2°N and t is a given 
prediction initial time in pentad. The subscripts represent the longitudinal locations along the equator. The choice 
of longitudes and timings in EPWWV was based on the propagation of the eastward Kelvin wave at approximately 
30°/month23. The weighting parameters α1 ∼ a3 are defined as the difference between the climatological mean 
of D20 at 175°E and the climatological mean of D20 at these three longitudes. α1, α2 and α3 are 2.8, 9.2 and 28.1 
used here, respectively.

The other term, EPOA(t), measures the positive feedback resulting from the interaction between the atmos-
phere and ocean at the equator. EPOA(t) reflects that the ocean–atmosphere coupled feedback can amplify or 
suppress the anomaly of EPWWV(t), according to the events of westerly wind events/easterly wind surges (WWEs/
EWSs). This coupled feedback is constructed as:

= ⋅EP t sign event t w dH t EP( ) ( ( , )) ( , ) (5)OA x WWV

where wx represents the zonal surface wind anomalies over the region 180°–155°W, 2°S–2°N. The EPOA(t) includes 
two parts. The first part is to define the wind event (westerly or easterly anomalies) as follows:

=





−
−

event t w
positive w in t pentads t
negative w in t pentads t

( , )
[ 10 , ]
[ 10 , ] (6)

x
x

x

The second part is to measure the modulation of the wind event on the change of WWV, which can amplify or 
suppress the development of the Bjerknes feedback. Here, we assume that EPOA(t) is active only when the EPWWV 
changes dramatically and the same sign wind events can be detected for more than 5 pentads (25 days) during a con-
tinuous period of 10 pentads (50 days), representing the consistent westerly or easterly anomalies. The modulation  
of the wind event is defined as:

=









− − + − − −
≤

< (7)
dH t EP

EP t EP t EP t EP t
pentads event t w

event t w pentads
( , )

( ) ( 5) ( 5) ( 10)
2

, 5 ( , )

0, ( , ) 5
WWV

WWV WWV WWV WWV
x

x

https://doi.org/10.1038/s41598-020-57853-7


1 0Scientific RepoRtS |          (2020) 10:984  | https://doi.org/10.1038/s41598-020-57853-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

ensemble empirical mode decomposition (eeMD). Empirical mode decomposition (EMD) is a 
method of breaking down signals into various components65. The decomposition is designed to seek the different 
intrinsic mode functions (IMFs) of oscillations from high-frequency to low-frequency based on local time scales. 
After extracting M-1 IMFs via EMD, the original signal can be reconstructed by superposing the obtained IMFs 
and the residual (rM):

∑= +
=

−
X t t r t( ) IMF ( ) ( )

(8)m

M

m M
1

1

A higher order of IMF (larger m) refers to a lower frequency component.
Ensemble EMD (EEMD) is an extension of the EMD66,67. The IMFs from EEMD are based on an average of 

EMD ensembles, and each EMD member has an added independent white noise with the same standard devia-
tion. In contrast to many almost previous decomposition methods, the EEMD is empirical, intuitive, direct, and 
adaptive. Specifically, no pre-determined basis functions are required.

Using the EEMD as a low-pass filter is natural and it is more practical in real-time forecast than the con-
ventional time filters. The potential end-point effect issue can be minimized. The end-point effect occurs at the 
beginning and end of the signal because there is no point before the first data point and after the last one to be 
considered68. A modified linear extrapolation method66, where additional extrema are added to the ends of the 
data by linear extrapolation of the two maxima (minima) near the end point, is adopted to reduces the end-point 
effect.

Data availability
The data supporting the findings of this study are available within the article. Any other data are available from 
the corresponding author upon request.
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