
Efficient parallel I/O with ZioLib in Community Atmosphere ModelEfficient parallel I/O with ZioLib in Community Atmosphere Model (CAM)(CAM)
Yu-Heng Tseng and Chris Ding (yhtseng@lbl.gov and chqding@lbl.gov)

Computational Research Division, Lawrence Berkeley National Laboratory

IntroductionIntroduction
High resolution Century- or millennium-long global
climate simulations using the NCAR Community
Climate System Model (CCSM) generate
tremendous amount of data. Efficient I/O is a
crucial factor for such large-scale simulations on
massively parallel machines, but CCSM currently
uses sequential I/O through a single processor.
This will soon become a major bottleneck for even
higher resolution simulations. Here we implement
the Parallel NetCDF (PnetCDF) with ZioLib
algorithm in the Community Atmosphere Model
(CAM), a component of CCSM, to facilitate efficient
and flexible parallel I/O.
In distributed memory parallel environment, most
applications rely on a serial I/O strategy, where the
global array is gathered on a single processor and
then written out to a file. The I/O performance with
this approach is largely limited by single PE I/O
bandwidth. Even when parallel I/O is used,
satisfactory parallel scaling is not always
observed. Parallel I/O rates can depend sensitively
on parallel decompositions. The current approach,
combining the features of PnetCDF and ZioLib,
ensures the flexibility and the maximum I/O rate
for all physical decompositions. Our tests show
that this approach greatly Improves the CAM I/O
performance and removes the I/O bottleneck. The
maximum speed-up is roughly scaled with the
increasing domain size.

Parallel Parallel NetCDFNetCDF library with library with ZioLibZioLib
algorithmalgorithm
NetCDF is a simple and widely used file format.
The PnetCDF interface facilitates an efficient
parallel I/O to access a single netCDF file [1].
However, the I/O rate may not be optimal
depending on the array’s index order and the
results may not be consistent with the serial I/O.
On the other hand, ZioLib [2] can flexibly remap
the distributed array and output data in parallel.
Thus, our strategy is to remap a distributed field
into a Z-decomposition on a subset of processors
(“I/O staging processors”) using the ZioLib
algorithm, and then write to a disk file using
PnetCDF (see below figure). In this Z-
decomposition, the data layout of the remapped
array on the staging processors’ memory is the
same as on disk, thus only block data transfer
occurs during parallel I/O, achieving maximum
efficiency.

Advantages of Advantages of PNetCDFPNetCDF with with ZioLibZioLib
algorithmalgorithm

Relieve memory limitations on a processor
Relieve congestion on I/O server nodes
Write/read in large blocks (no seeks) in parallel

with maximum flexibility
Achieve robust and maximum I/O performance

regardless of parallel decomposition
Eliminate a temporary global field from user

codes (gather/scatter/transpose)

AcknowledgementsAcknowledgements
This work is supported by a DOE SciDAC climate project
and a NERSC Program.

AbstractAbstract
Serial I/O within a parallel environment has the
potential bottleneck as the resolution increases or
the output is more frequent. The maximum I/O
rate on a distributed array is reached while the
parallel decomposition is consistent with the last
array dimension (“Z”-decomposition). Since this is
not the case for arrays in CAM, remapping arrays
into a Z-decomposition becomes important in
order to increase I/O bandwidth. Further, history
variables are stored in a disk file in a different
index order than the one in CPU resident memory
due to different parallel decompositions and
dynamic cores. To facilitate efficient and flexible
I/O in CAM, we combine the Parallel NetCDF
library with ZioLib algorithm. This procedure
remaps distributed arrays into a Z-decomposition
on a subset of processors, and then writes to a
disk file in parallel to obtain the maximum parallel
performance. For a 1.1GB standard output field of
CAM3.1 D-resolution run, the current procedure
can speed up history I/O by a factor of over 13 on
an IBM SP.

Performance of parallel I/OPerformance of parallel I/O (continued)

Same experiments for 576x361x26 D-resolution.
Speeds up writes by a factor of over 13 with
respect to the single-PE I/O. The speed-up is
roughly scaled with the global domain size.

Performance on CAM3.0/3.1 History Performance on CAM3.0/3.1 History
I/OI/O
In the current CAM, a field in CPU resident
memory is in one index order but is stored in a
disk file in another order. For example, history
data for CAM’s dynamic variables are in the
(longitude, height, latitude) order but must be
stored in a file in the (longitude, latitude, height)
order. Changing index orders complicates a
parallel I/O implementation and slows down I/O.
To optimize the I/O performance, we have
implemented the PnetCDF with ZioLib algorithm
on CAM3.0 and CAM3.1 history I/O and compared
with the serial netCDF I/O (i.e., one staging
processor) using 2 to 512 MPI tasks on the IBM SP
and the Linux cluster at LBNL/NERSC. All dynamic
cores (Eulerian, Semi-Lagrangian and Finite
Volume) are tested. The parallel implementation in
CAM is illustrated below.

Eulerian dynamic core
T85L26 resolution (256 longitudes x 128
latitudes x 26 levels) is used. The current
approach speeds up by a factor of 3.

The table shows that, the speed-up of our
approach is significant with respect to the existing
method in larger domain size. The potential I/O
bottleneck problem is greatly reduced.PNetCDFPNetCDF and and ZioLibZioLib Source CodesSource Codes

The source codes and information about the
Parallel NetCDF (PnetCDF) can be downloaded
from http://www.unix.mcs.nanl.gov/parallel-netcdf/.
The source codes, test examples, and user’s
manual of ZioLib are all available from
http://crd.lbl.gov/~cding/acpi/ZioLib/.

ZioLib PnetCDF

Writing the global field of distributed array (X,Z,Y) to a disk
file in (X,Y,Z) order using three I/O staging processes.

In CAM, processor 0 gathers distributed data,
transposes the global array, and writes to a file.
Compared to this method, the current approach
speeds up by a factor of 2.

Finite Volume dynamic core
Standard low resolution (144 longitudes x 91
latitudes x 26 levels) is used.

ReferenceReference
[1] J. Li, W. K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A.
Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: a high-performance
scientific I/O interface”, SC’2003 Nov. 15-21, 2003, Phoenix, Arizona, USA.
[2] W. S. Yang and C. Ding, “ZioLib: A parallel I/O library”, Lawrence Berkeley
National Laboratory Report 53521.

4 days544 days53 days593 days32

4 days431 days53 days480 days64

Parallel I/OTotalSerial I/OTotal
Procs

CAM 3.1 (Parallel I/O)CAM 3.1 (Serial I/O)

Estimated time for 20 years simulation of D- resolution
(FV) on SEABORG (assuming weekly standard output)

