= Office of
-% Science

U.S. DEPARTMENT OF ENERGY

Efficient parallel I/O with ZioLib in Community Atmosphere Model (CAM)

Yu-Heng Tseng and Chris Ding (yhtseng@Ibl.gov and chqgding@lbl.gov)
Computational Research Division, Lawrence Berkeley National Laboratory

. A
Ffroeenrs r

Abstract

Serial I/O within a parallel environment has the
potential bottleneck as the resolution increases or
the output Is more frequent. The maximum I/O
rate on a distributed array is reached while the
parallel decomposition is consistent with the last
array dimension (“Z"-decomposition). Since this Is
not the case for arrays in CAM, remapping arrays
Into a Z-decomposition becomes important In
order to increase /O bandwidth. Further, history
variables are stored in a disk file in a different
Index order than the one in CPU resident memory
due to different parallel decompositions and
dynamic cores. To facilitate efficient and flexible
/O In CAM, we combine the Parallel NetCDF
library with ZioLib algorithm. This procedure
remaps distributed arrays into a Z-decomposition
on a subset of processors, and then writes to a
disk file in parallel to obtain the maximum parallel
performance. For a 1.1GB standard output field of
CAM3.1 D-resolution run, the current procedure
can speed up history I/O by a factor of over 13 on
an IBM SP.

Introduction

High resolution Century- or millennium-long global
climate simulations using the NCAR Community
Climate System Model (CCSM) (generate
tremendous amount of data. Efficient I/O Is a
crucial factor for such large-scale simulations on
massively parallel machines, but CCSM currently
uses sequential 1/O through a single processor.
This will soon become a major bottleneck for even
higher resolution simulations. Here we implement
the Parallel NetCDF (PnetCDF) with ZioLib
algorithm in the Community Atmosphere Model
(CAM), a component of CCSM, to facilitate efficient
and flexible parallel I/0O.

In distributed memory parallel environment, most
applications rely on a serial I/O strategy, where the
global array is gathered on a single processor and
then written out to a file. The I/O performance with
this approach is largely limited by single PE 1I/O
bandwidth. Even when parallel /O Is used,
satisfactory parallel scaling iIs not always
observed. Parallel I/O rates can depend sensitively
on parallel decompositions. The current approach,
combining the features of PnetCDF and ZiolLlib,
ensures the flexibility and the maximum |/O rate
for all physical decompositions. Our tests show
that this approach greatly Improves the CAM 1/O
performance and removes the I/O bottleneck. The
maximum speed-up Is roughly scaled with the
Increasing domain size.

Parallel NetCDF library with ZioLib
algorithm

NetCDF Is a simple and widely used file format.
The PnetCDF Interface facilitates an efficient
parallel I/O to access a single netCDF file [1].
However, the [|/O rate may not be optimal
depending on the array’'s index order and the
results may not be consistent with the serial /0.
On the other hand, ZioLib [2] can flexibly remap
the distributed array and output data in parallel.
Thus, our strategy is to remap a distributed field
Into a Z-decomposition on a subset of processors
(“I/O staging processors”) using the ZioLib
algorithm, and then write to a disk file using
PnetCDF (see below figure). In this Z-
decomposition, the data layout of the remapped
array on the staging processors’ memory Is the
same as on disk, thus only block data transfer
occurs during parallel 1/0O, achieving maximum
efficiency.

Distributed array
In (X.Z2,Y) indeXx order

/O staging PEs
write in parallel

Remapped on staging PEs
In {(X,Y.Z) index order

If; I::}
— —
he ight —
(Z) ) ;
ZioLib PnetCDF
latitude (Y) Z-decomposition
longitude (%)

Writing the global field of distributed array (X,Z,Y) to a disk
file in (X,Y,Z) order using three 1/O staging processes.

Advantages of PNetCDF with ZioLib
algorithm

@ Relieve memory limitations on a processor
@ Relieve congestion on I/O server nodes

@ Write/read In large blocks (no seeks) in parallel
with maximum flexibility

@ Achieve robust and maximum /O performance
regardless of parallel decomposition

@ Eliminate a temporary global field from user
codes (gather/scatter/transpose)

PNetCDF and ZioLib Source Codes

The source codes and Iinformation about the
Parallel NetCDF (PnetCDF) can be downloaded
from http://www.unix.mcs.nanl.gov/parallel-netcdf/.

The source codes, test examples, and user’s
manual of ZioLib are all available from
http://crd.lbl.gov/~cding/acpi/ZioLib/.

Performance on CAM3.0/3.1 History
1/O

In the current CAM, a field in CPU resident
memory IS In one index order but Is stored In a
disk file in another order. For example, history
data for CAM’'s dynamic variables are In the
(longitude, height, latitude) order but must be
stored in a file in the (longitude, latitude, height)
order. Changing Index orders complicates a
parallel /O implementation and slows down [/O.

To optimize the /O performance, we have
Implemented the PnetCDF with ZioLib algorithm
on CAM3.0 and CAMS3.1 history I/O and compared
with the serial netCDF 1/O (i.e., one staging
processor) using 2 to 512 MPI tasks on the IBM SP
and the Linux cluster at LBNL/NERSC. All dynamic
cores (Eulerian, Semi-Lagrangian and Finite
Volume) are tested. The parallel implementation in
CAM is illustrated below.

PO Pl P2 P3

Wy W W
File System Disk

@ Finite Volume dynamic core

Standard low resolution (144 longitudes x 91

latitudes X 26 levels) Is used.
FV 2x2.25

Bandwidth (MB/s)

Number of processors

In CAM, processor 0 gathers distributed data,
transposes the global array, and writes to a file.
Compared to this method, the current approach
speeds up by a factor of 2.

Performance of parallel I/O (continued)

e Same experiments for 576x361x26 D-resolution.

Speeds up writes by a factor of over 13 with
respect to the single-PE 1/O. The speed-up Is
roughly scaled with the global domain size.

FV D-resolution

140 : : : A
L —e—serial
e I SN O A e SO -~ Parallel /O (M1) |
ey -e--Parallel IO (M2)
0T ety - Parallel O (M4)
100L A a__‘______a-«*‘~!_!\\ _____ --#-- Parallel [/O (M8) -
- V. ol T I I O R A
N " I ; | .
o < .
E 8oL % ,,’ ______________________________ — .......... B NREREE 10 . Tt ____________ e
£ o’
2
% BOL ...... .......... ............................. ................. Yi\ ..... ..........................
S NERE
m M 5 N
AOF P _____________________________ ______________________________ ______ N R
ol _________________ ____________ _______ ______ ______ _____ _____________________________ _________________ _________ ________ ______
. : EB 5 : Eei EB 5 D .
0 L
10’ 10°

Number of processors

@ Eulerian dynamic core

T85L26 resolution (256 Ilongitudes x 128
latitudes x 26 levels) Is used. The current
approach speeds up by a factor of 3.

ELD T85
55 5 5 . = e

—e—sefial
500 - --0--ParalleII/O(M1) ....................... ............. ......... ........ ...... ..... _
45/ ~--Parallel /O (M2) . . . U W T U W N — 1
Parallel IO (M4)  gececca
40 I __E__F)ara”ell/o(MS),,x" .......... .............. ....... ...... ..... ........................ _
(|- E—— T PP SN S SN 0 SR S P i

AT ; %,
% 30 L u.-_—_-_-_-_-!_f_-_-..-_'ﬂ‘_'j ____________ _____________________________ ,(‘_'_ _____ ________________________ o \\\ _________________________

£ i N

O 2R ’ A
§ 25 _ ..... .................. ,( ................... ...................................... 1‘;‘ ......................
g 20_ ............................................................ ..... ................... oﬁ‘b‘ ............. ...................................................................
15 _____ ____________________________ “--.,,“ _____________________________________________ | S
10 o _& _________________ e_ ____________ % _____________________________________________________________
5_ ........................................................................................................................................................................................

0 : ; N ; i S N I

10° 10’ 10°

Number of processors

Estimated time for 20 years simulation of D- resolution
(FV) on SEABORG (assuming weekly standard output)

CAM 3.1 (Serial I/O) CAM 3.1 (Parallel 1/O)

Procs _
Total Serial I/0O Total Parallel I/0O
32 593 days 53 days 544 days 4 days
64 480 days 53 days 431 days 4 days

The table shows that, the speed-up of our
approach is significant with respect to the existing
method In larger domain size. The potential 1/O
bottleneck problem iIs greatly reduced.

Acknowledgements

This work is supported by a DOE SciDAC climate project
and a NERSC Program.

Reference

[1] J. Li, W. K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A.
Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:. a high-performance
scientific I/O interface”, SC'2003 Nov. 15-21, 2003, Phoenix, Arizona, USA.

[2] W. S. Yang and C. Ding, “ZioLib: A parallel I/O library”, Lawrence Berkeley
National Laboratory Report 53521.




