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SUMMARY

A new co-ordinate invariant streamwise upwind formulation for convection dominated flows is devel-
oped. The eddy diffusivity/viscosity is added directly to the equations in order to remove the oscillations
in the solution. The equations then can be solved by any high-order scheme and the solution retains the
accuracy of the high-order scheme. The accuracy and reduced lateral thickness growth rate are demon-
strated with several numerical examples, including pure convective flows and lid-driven cavity flow.
The lateral spreading due to the numerical diffusion is controlled by the anisotropic tensor. Copyright
© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that although central difference approximations are more accurate than upwind
biased approximations that use the same number of grid points, they are prone to produce
solutions that contain unphysical (and mathematically incorrect) oscillations. Furthermore,
when they are used in conjunction with certain iterative or time advance methods, they are
less stable than upwind methods. The generally accepted criterion for the onset of oscillations
(‘wiggles’) in the solutions is that the cell Reynolds (or Peclet) number should be greater
than two. It should be emphasized that this is a necessary but not a sufficient condition.

A commonly used means of avoiding or, at least reducing, the severity of oscillations in
solutions is to use upwind biased methods. Indeed, one can show [1] that the only method
guaranteed to produce monotone solutions is the first-order accurate upwind method. However,
upwind methods produce smooth solutions by introducing significant diffusive errors. They also
tend to be more stable when used with iterative methods; the additional stability can be traced
to the same source.
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When upwind methods are used in two or three dimensions, the diffusive error usually
produces an unphysical increase in the rate of growth of thin layers of rapid lateral variation of
the solution e.g. thin shear layers such as boundary layers or jets or thin layers of material due
to localized sources. In oceanic simulations, this effect may lead to broadening and reduction
of strength of coastal currents [2]. In atmospheric work, it may result in broadening of upper
atmosphere jets. Thus, although upwind methods produce smooth results, they modify the
solution substantially, often in ways that degrade the quality significantly.

One means of overcoming this problem is to use a method that introduces diffusion only
in the streamwise (or, as it is often called, streamline) direction. Such a method will produce
unphysical effects in regions of strong streamwise variation (such as stagnation points) but
can eliminate the undesirable lateral spreading mentioned above. Methods of this type are not
new and several have been proposed in the past. We now review some of them.

Brooks and Hughes [3] proposed a streamline upwind Petrov—Galerkin (SUPG) method that
achieves the desired effect by introducing an upwind biased weighting in a variationally based
finite element method. This method has been adopted by a number of authors. Kelly er al. [4]
introduced the anisotropic eddy viscosity using an balancing dissipation method. Raithby and
his collaborators introduced a skew upwind method [5]. This method uses finite difference
approximations along local streamline directions. However, to obtain the values needed in the
difference approximation, interpolation is required and the diffusive interpolation error gives
solutions that contain the kinds of effects that were mentioned above.

More recently, Large et al. [6] proposed an anisotropic eddy viscosity method specifically
for the purpose of improving the prediction of equatorial currents in the ocean. Although their
method is quite successful in accomplishing its desired aim (as they demonstrated), it is tied
to the particular co-ordinate system they used and thus does not have the invariance properties
or generality that a good method should possess.

In this paper, we offer an alternative approach in which a co-ordinate invariant anisotropic
eddy viscosity is added to the equations of motion directly. The equations may then be solved
by any method one desires, including central difference methods. The essential difference
between the proposed approach and previous SUPG methods is the form of the anisotropy eddy
viscosity, thus the method can be seen as a co-ordinate invariant SUPG method [3,4]. The
accuracy mainly depends on the based numerical schemes (e.g. central difference). Because
it is simpler, we shall discuss the scalar case first and then go on to the vector case. After
introducing the method, we shall offer some examples that illustrate the effectiveness of the
approach.

2. AN ANISOTROPIC DIFFUSIVITY FOR A CONSERVED SCALAR

The equation for the conservation of a conserved scalar, ¢, is well known

¢ op 0 [ 0
m*”f%‘%(%) )

All of the terms have been written in divergence (strong conservation) form to make the
achievement of conservation in a numerical approximation easier. In particular, the term on
the right-hand side is the negative of the divergence of the diffusive flux, ¢;= — ad¢/0x;.
As noted in the introduction, when this equation is solved with an upwind method in two or
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three dimensions, the solution is smooth but the numerical errors produce greatly increased
lateral spreading of a thin layer of the concentration, ¢.

In order to avoid the oscillations associated with central difference methods and the exces-
sive diffusion of upwind methods, we would like to add to this equation a term that increases
the diffusion in the streamwise direction without modifying the diffusion in the lateral direc-
tions. This is easily done. Such a flux has the form

0¢
gin = — Avuju o (2)
In vector notation, this is
qQv=—Ayuu-Vo (3)
In essence, we have added a diffusive term in which the diffusivity is the tensor
uu
o = Anujug = oty ;72]( 4)

where g% = u,,u,, is the square of the magnitude of the local velocity. The added diffusive flux
is designed such that, when these equations are transformed into a co-ordinate system in which
one of the axes is aligned with the local velocity vector, only the streamwise component of
the flux is non-zero i.e. the diffusivity tensor becomes in 2D

(0 )
= (%)
00

Thus, Equation (1) represents an additional diffusive contribution that is entirely in the stream-
wise direction. Note that the form of the anisotropic diffusivity tensor is very similar to that
proposed in Reference [4]. However, the diffusion sources are totally different and are co-
ordinate invariance.

We emphasize that the diffusive flux is added strictly for numerical reasons and has no
physical significance. Indeed, it will, in some cases, cause the solution to be less accurate.
To be sure that we do not introduce wiggles into the solution, the constant must be chosen
such that the cell Peclet number obeys the condition

Pe.= 92 <2 (6)
o
This condition can easily be satisfied by choosing 4y so that

Ay (7)
2

In these inequalities, A should be chosen to be the largest distance within a cell i.e. the length
of the diagonal (Ax;Ax; ). The best choice for the coefficient 4y is obtained by replacing
the inequality sign by an equality sign. In that way, the minimum amount of diffusion needed
to achieve the desired result is introduced. This is a sufficient, but not necessary condition for
boundedness of central difference schemes. If higher-order central difference scheme is used
as the based scheme, the requirement for local Peclet number can be relaxed (e.g. Pe.<4).
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When the additional flux term is added to Equation (1), the resulting equation can be
solved with any standard method. In particular, central difference methods should produce
solutions with less lateral spreading and smaller oscillations when this term is added. If the
solution is slowly varying in the streamwise direction, the effect of the added term should
be nothing more than the reduction of oscillations and added stability to iterative numerical
solution methods. Note that this approach does not guarantee monotonicity. We emphasize
that no lateral diffusion has been added. Furthermore, the new term is quite easily evaluated.
These claims will be validated in Section 4.

3. THE NAVIER-STOKES EQUATIONS

The same approach can be applied to the Navier—Stokes equations, the only substantial dif-
ference being that the conserved quantity is a vector and its flux is therefore a second rank
tensor. This means that the added viscosity will need to be a fourth rank tensor.

The Navier—Stokes equations can be written as

au,» 6u,~uj _ 1 al 0

E+uj ax/ = ; aXi ‘I’gjfz‘j (8)
where
(%tl- auj o
‘ij— —V(axj+ aXi> = —2VS," (9)

is the viscous momentum flux tensor and S;; is the rate of strain tensor.
In this case, a streamwise momentum flux takes the form
6uk 6u1

TN = — Byuujuguy (

Y — 2By, 1
o, 6xk> N U U U Sy (10)

When this is transformed into a co-ordinate system in which the local velocity vector is the
1-axis, it is found that only 7,y is non-zero. The added viscosity is

Uiujurg
Vi = Byuujupu; = Cy — (11)

The condition that the coefficient Cy must satisfy so as to assure the absence of wiggles is

ch% (12)

in analogy with Equation (7).

As in the scalar case, the modified equation obtained by adding the streamwise viscous
term to the Navier—Stokes equations can be solved with any numerical method and central
difference methods are preferred. As in the scalar case, the coefficient Cy should be chosen
so that the inequality sign is replaced by an equality sign.

Although it appears a bit formidable, the new term is actually quite easily computed. The
term wuu;Sy is simply the double scalar product of the rate of strain tensor with the velocity
vector and is needed in all of the terms. It should therefore be computed first. In each equation,
this quantity is then multiplied by wu; and added to the other viscous terms.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
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In the following section, we shall apply the streamwise diffusion terms to the computation
of some standard model problems.

4. NUMERICAL EXAMPLES

4.1. Scalar transport in a constant convective flow

A typical test for the convection discretization is to consider the problem of transport of
a scalar quantity in a known velocity field. We discuss the behaviour of the anisotropic
upwinding method using both steady and unsteady solutions. A step profile is convected in a
uniform flow oblique to grid line. Since only convection is present in this case, the equation
to be solved is

op _ dp 09

— =u— — 13

o "o T30y (13)

In the current test, the velocity is given by u=uv=ug(const) which means that the scalar

is transported along a 45° diagonal. The domain size is L x W =[0 1] x [0 1]. The scalar ¢
at west boundary (x =0) is prescribed as a step function

0 y<02
P(y)= { (14)
1 »=02

and ¢ at south boundary (y=0) is set to zero.

4.1.1. Steady case. The scalar distribution does not vary with time in a steady case
(0¢p/0t=0). At the outflow boundaries, the first-order upwind scheme is used in all cases
and the simulation domain is extended further downstream so that the effect of outflow con-
dition is not shown. We show results obtained using the upwind difference scheme (UDS),
streamwise upwind difference scheme (SUDS) and central difference scheme (CDS) below.
In Figure 1, we show profiles of the scalar ¢p at y=0.5, obtained on uniform 10 x 10 and
20 x 20 grids. The effect of severe numerical diffusion is clearly seen in the UDS solution.
Only a little improvement is found in the solution on the refined grid. On the other hand,
SUDS produces a profile that is steeper, but it has a mild overshoot. CDS generates severe
oscillations. The numerical diffusion introduced by these schemes can be seen in the contour
plots of the scalar ¢, see Figures 2 and 3. No numerical diffusion is found in the CDS results
but the introduced oscillations are clearly convected in the streamwise direction.

Note that the streamwise upwind method does not produce zero lateral spreading of the
layer. The reason for this is that the numerical errors introduced when the streamwise diffusion
term is evaluated with second-order central differences has the form of a fourth-order diffusion
term. Such a term should be expected to produce a lateral width that is proportional to s'/4
where s is the downstream distance (Figure 4). This compares with the s'/> behaviour of
second-order diffusion (the dash line in Figure 4). The layer thickness 26 is then proportional
to (so + s)"4, where sq is the initial layer thickness. In Figure 4, layer width 6 for UDS
(¢) and SUDS (o) results is expressed in terms of the distance between the ¢ =0.1 and
¢ =0.9 contours. The solid lines correspond to the fitting function & =c(sy + s)"/4, where
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Figure 1. Profile of scalar ¢ at y=35 (——: UDS, —-: CDS and —: SUDS), calculated
on a 10x 10 grid (a) and a 20 x20 grid (b). The exact solution is a step function
where the step is located at y=0.3.
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Figure 2. Contour plot of the scalar ¢ for a constant convective flow on a
10 x 10 grid: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 3. Contour plot of the scalar ¢ for a constant convective flow on a
20 x 20 grid: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 4. The layer thickness 6 for (a) 10 x 10 grid and (b) 20 x 20 grid, calculated on ¢ =0.9 con-

tour (o: UDS, o: SUDS). The solid line denotes the fitting function = c(so + s)"* where ¢=0.14,
so= —0.06 for (a) and ¢=0.076, so= — 0.06 for (b).

c=0.14, sp= — 0.06 for 10 x 10 grid, Figure 4(a), and ¢=0.07, so= — 0.06 for 20 x 20
grid, Figure 4(b), respectively. The effects of lateral diffusion would be reduced if high-order
central difference approximation was used [7].

4.1.2. Unsteady case. In addition to the quantitative comparisons for steady solutions, we also
demonstrate the behaviour of the SUDS in a transient test case. The numerical setup is the
same as that in the previous steady case but we want to look at the initial transient. In the exact
solution, the step at west boundary moves along the 45° diagonal. The Euler explicit scheme
(perhaps not the best choice) was used. Figures 5 and 6 show the contours of ¢ calculated
on a 20 x 20 grid for UDS, CDS and SUDS at time ¢t=0.2L/U, and t=0.4L/U,, respec-
tively. CDS gives us oscillatory results which have comparable magnitudes (in the order of
O(107")). Very mild oscillation is observed (in the order of O(1073)) in the SUDS case while
the UDS provides smooth and monotonic solution. No significant lateral spreading is observed
in SUDS, consistent with our discussion in the last section. The UDS results generate ex-
cess diffusion initially (¢ =0.2L/U,, Figure 5(a)) and later the transient contours (¢ =0.4L/Uj,
Figure 6(a)) resemble the steady solution in Figure 3(a). It is evident that UDS produce
excess diffusion in the transient flows. At the outflow boundaries, we can observe the effects
of first-order upwind scheme in all cases. In general, the transient behaviour of the SUDS
is much closer to that of the based scheme (second-order central difference in our case) we
choose. The role of anisotropic diffusion is mainly to stabilize the numerical procedure at
each time step instead of producing monotonic solution using standard upwind-type methods.
Standard upwinding of the convective term is usually not consistent with centrally weighted
source and transient terms, resulting in excessively diffusive solutions [3, 8]. In SUDS, a great
amount of anisotropic diffusion also implies that increased resolution may be required in some
regions.
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Figure 5. Contour plot of the scalar ¢ for a constant convective flow on a 20x20 grid at
t=02L/Uy: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 6. Contour plot of the scalar ¢ for a constant convective flow on a 20x20 grid at
t=0.4L/Uy: (a) UDS; (b) CDS; and (c) SUDS.

4.2. Scalar transport in a stagnation flow

The second example involves the transport of scalar quantity in a more complex velocity field,
one with curved streamlines. The boundary condition for scalar ¢ is still the step profile on
the inflow boundary x =0 but the step is located at y=0.5. The velocity field is given by
u=1—x and v=y, which represents the flow near a stagnation point (the exact solution is
provided in Figure 7(a)). The streamlines are the lines (1 — x)y=const, and change direc-
tion with respect to the Cartesian grid. The contours of ¢ calculated on 20 x 20 and 40 x 40
uniform grids for UDS, CDS and SUDS are presented in Figures 7 and 8, respectively.
The contour plots clearly show the effects of numerical diffusion and dispersion. In CDS,
strong oscillations over the whole domain result from the step change in ¢ along the inflow
boundary.

It is clear that the oscillation in CDS propagates mainly in the streamwise direction. Adding
sufficient diffusion in this direction smoothes the results significantly. The spread of contour
lines shows the effect of numerical diffusion introduced by the schemes. It is obvious that the
numerical diffusion from UDS is much greater than that from SUDS. No numerical diffusion
is observed in CDS but the severe dispersion error results in large oscillations in a significant
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Figure 7. Contour of ¢ near a stagnation point with a step profile at the west boundary on
a 20x20 grid. Comparison among different schemes: (a) Exact solution; (b) UDS solution;
(c) CDS solution; and (d) SUDS solution.

part of the domain. Both CDS and SUDS results converge toward the exact solution faster
than UDS. When the computational grid is fine enough, the local Peclet number is reduced
and the introduced diffusion in SUDS converges to zero. Thus SUDS results will converge to
the exact solution.

We also show the profile of ¢ at x =0.75 on uniform 10 x 10 and 20 x 20 grids in Figure 9.
The CDS solution contains very strong oscillations while, as expected, the UDS solution does
not oscillate. However, the latter is much too diffuse. SUDS produces a profile with much
improved steepness and generates only a very small oscillation. The major issue for SUDS
is the balance between accuracy and stability. The criteria used to generate the diffusivity for
SUDS does not guarantee monotonicity; it merely eliminates 2Ax waves.

4.3. Lid-driven cavity flow

Finally, we selected a classic example to illustrate the streamwise upwind method for in-
compressible flow. The numerical method described in last section is applied to a laminar
lid-driven cavity flow at Reynolds number Re= pUp H/v=2000, where lid velocity is Up
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Figure 8. Contour of ¢ near a stagnation point with a step profile at the west boundary on
a 40 x40 grid. Comparison among different schemes: (a) Exact solution; (b) UDS solution;
(c) CDS solution; and (d) SUDS solution.

and cavity height is H. This case has been used by many authors and accurate solutions
are available in the literature. More discussion can be found in Reference [9]. Comparisons
of the profiles of these horizontal (vertical) velocities at the vertical (horizontal) centreline
are shown in Figures 10 and 11, respectively. The grid resolution varies from 10 x 10 to
160 x 160. UDS is not very accurate and the solution on the finest grid is still far from the
grid independent solution. Both CDS and SUDS show monotonic convergence and the results
are very similar. They both show second-order accuracy in the convergence error (Figure 12)
while UDS shows only first-order accuracy. This is expected since the numerical diffusion
from SUDS is reduced in a second-order manner as the grid is refined.

One of the major benefits of SUDS is that it removes the oscillation from CDS along the
streamwise direction on the coarse grid. This can be seen by plotting the vertical velocity on
a vertical line at x=0.1 very close to the west wall (Figure 13). CDS generates a moder-
ate oscillation near the upper lid on the coarse grid (grid resolution: 20 x 20) while SUDS
removes the oscillation by adding a small amount of diffusion but maintains the accuracy
of CDS.
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Figure 9. Profile of ¢ at x=0.75, calculated on a 10 x 10 grid (a) and a 20 x 20 grid (b).
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Figure 10. Velocity profiles at the vertical centreline at Re =2000, calculated on various grids ranging
from 10 x 10 to 160 x 160: (a) UDS; (b) CDS; and (¢) SUDS.
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Figure 11. Velocity profiles at the horizontal centreline at Re = 2000, calculated on various grids ranging
from 10 x 10 to 160 x 160: (a) UDS; (b) CDS; and (c) SUDS.
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Figure 12. Comparison of the convergence error for the velocity in a lid-driven cavity flow at Re =2000
for different convective schemes. The upper notation > represents slope —1 and —2.

5. SUMMARY AND CONCLUSIONS

This study has purposed a new co-ordinate invariant streamwise upwind formulation. The
damping of high-frequency dispersion error (oscillations) is achieved by adding a co-ordinate
invariant anisotropic eddy diffusivity/viscosity tensor to the equations in accord with the local
cell Peclet number. The method adds anisotropic diffusivity/viscosity only in the streamwise
direction and possesses the desirable features of accuracy and stability. It also eliminates
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Figure 13. Velocity profiles at the horizontal centreline at Re = 2000, calculated on various grids ranging
from 10 x 10 to 160 x 160: (a) UDS; (b) CDS; and (c) SUDS.

the excessive crosswind diffusion of other upwind-biased dissipative schemes. We used a

constant convective flow to demonstrate the ; power lateral spreading of the current scheme.

A stagnation flow and a lid-driven cavity flow are used to illustrate the accuracy and the
properties of the method. The method is easy to implement and retains the accuracy of the
chosen numerical scheme. The extension to three-dimensions is straightforward.
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